-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloan prediction.py
521 lines (393 loc) · 21.8 KB
/
loan prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
import pandas as pd
import numpy as np # For mathematical calculations
import seaborn as sns # For data visualization
import matplotlib.pyplot as plt # For plotting graphs
import warnings # To ignore any warnings
warnings.filterwarnings("ignore")
# Train file will be used for training the model, i.e. our model will learn from this file. It contains all the
# independent variables and the target variable. Test file contains all the independent variables, but not the target
# variable. We will apply the model to predict the target variable for the test data. Sample submission file contains
# the format in which we have to submit our predictions. Reading data
train = pd.read_csv('train_u6lujuX_CVtuZ9i.csv')
test = pd.read_csv('test_Y3wMUE5_7gLdaTN.csv')
# Let’s make a copy of train and test data so that even if we
# have to make any changes in these datasets we would not lose the original datasets.
train_original = train.copy()
test_original = test.copy()
train.keys()
print(train.columns)
print(test.columns)
# print data_types for each variables
print(train.dtypes)
print(train.shape, test.shape)
# Analysis
train['Loan_Status'].value_counts()
# Normalise can be set to true to print the proportions instead of Numbers.
train['Loan_Status'].value_counts(normalize=True)
train['Loan_Status'].value_counts().plot.bar()
# visualize each variable separately
# Categorical features: These features have categories (Gender, Married, Self_Employed, Credit_History, Loan_Status)
# Ordinal features: Variables in categorical features having some order involved (Dependents, Education, Property_Area)
# Numerical features: These features have numerical values (ApplicantIncome, CoapplicantIncome, LoanAmount,
# Loan_Amount_Term)
plt.figure(1)
plt.subplot(221)
train['Gender'].value_counts(normalize=True).plot.bar(figsize=(20, 10), title='Gender')
plt.subplot(222)
train['Married'].value_counts(normalize=True).plot.bar(figsize=(20, 10), title='Married')
plt.subplot(223)
train['Self_Employed'].value_counts(normalize=True).plot.bar(figsize=(20, 10), title='Self_Employed')
plt.subplot(224)
train['Credit_History'].value_counts(normalize=True).plot.bar(figsize=(20, 10), title='Credit_History')
plt.show()
# let’s visualize the ordinal variables.
plt.figure(1)
plt.subplot(131)
train['Dependents'].value_counts(normalize=True).plot.bar(figsize=(24, 6), title='Dependents')
plt.subplot(132)
train['Education'].value_counts(normalize=True).plot.bar(figsize=(24, 6), title='Education')
plt.subplot(133)
train['Property_Area'].value_counts(normalize=True).plot.bar(figsize=(24, 6), title='Property_Area')
# Lets visualise Numerical data
plt.figure(1)
plt.subplot(121)
sns.distplot(train['ApplicantIncome']);
plt.subplot(122)
train['ApplicantIncome'].plot.box(figsize=(16, 5))
# The boxplot confirms the presence of a lot of extreme values.
# This can be attributed to the income disparity in the society.
# this can be driven by the fact that we are looking at people with different education levels.
# Let us segregate them by Education:
train.boxplot(column='ApplicantIncome', by='Education')
plt.suptitle("")
# Let’s look at the Coapplicant income distribution.
plt.figure(1)
plt.subplot(121)
sns.distplot(train['CoapplicantIncome'])
plt.subplot(122)
train['CoapplicantIncome'].plot.box(figsize=(16, 5))
# Let’s look at the distribution of LoanAmount variable.
plt.figure(1)
plt.subplot(121)
df = train.dropna()
sns.distplot(df['LoanAmount']);
plt.subplot(122)
train['LoanAmount'].plot.box(figsize=(16, 5))
# Missing Values and Outliers Treatements
train.info()
train.isnull().sum()
# There are missing values in Gender, Married, Dependents, Self_Employed, LoanAmount,
# Loan_Amount_Term and Credit_History features.
# 1) We will treat the missing values in all the features one by one.
# 2) We can consider these methods to fill the missing values:
# a)For numerical variables: imputation using mean or median
# b)For categorical variables: imputation using mode
# There are very less missing values in Gender, Married, Dependents, Credit_History and Self_Employed features so,
# we can fill them using the mode of the features.
train['Gender'].fillna(train['Gender'].mode()[0], inplace=True)
train['Married'].fillna(train['Married'].mode()[0], inplace=True)
train['Dependents'].fillna(train['Dependents'].mode()[0], inplace=True)
train['Self_Employed'].fillna(train['Self_Employed'].mode()[0], inplace=True)
train['Credit_History'].fillna(train['Credit_History'].mode()[0], inplace=True)
train.isnull().sum()
# let’s try to find a way to fill the missing values in Loan_Amount_Term.
# We will look at the value count of the Loan amount term variable.
train['Loan_Amount_Term'].value_counts()
# It can be seen that in loan amount term variable, the value of 360 is repeating the most. So we will replace the
# missing values in this variable using the mode of this variable.
train['Loan_Amount_Term'].fillna(train['Loan_Amount_Term'].mode()[0], inplace=True)
train['LoanAmount'].fillna(train['LoanAmount'].median(), inplace=True)
train.isnull().sum()
# As we can see that all the missing values have been filled in the train dataset. Let’s fill all the missing values in
# the test dataset too with the same approach.
test['Gender'].fillna(train['Gender'].mode()[0], inplace=True)
test['Dependents'].fillna(train['Dependents'].mode()[0], inplace=True)
test['Self_Employed'].fillna(train['Self_Employed'].mode()[0], inplace=True)
test['Credit_History'].fillna(train['Credit_History'].mode()[0], inplace=True)
test['Loan_Amount_Term'].fillna(train['Loan_Amount_Term'].mode()[0], inplace=True)
test['LoanAmount'].fillna(train['LoanAmount'].median(), inplace=True)
# Let’s visualize the effect of log transformation. We will do the similar changes to the test file simultaneously.
train['LoanAmount_log'] = np.log(train['LoanAmount'])
train['LoanAmount_log'].hist(bins=20)
test['LoanAmount_log'] = np.log(test['LoanAmount'])
# Bivariate Analysis
# Categorical Independent Variable vs Target Variable
# First of all we will find the relation between target variable and categorical independent variables.
# Let us look at the stacked bar plot now which will give us the proportion of approved and unapproved loans.
train.describe()
train.shape
train.dropna()
train.shape
Gender = pd.crosstab(train['Gender'], train['Loan_Status'])
Gender.div(Gender.sum(1).astype(float), axis=0).plot(kind="bar", stacked=True, figsize=(4, 4))
# It can be inferred that the proportion of male and female applicants is more or less same
# for both approved and unapproved loans.
# Now let us visualize the remaining categorical variables vs target variable.
Married = pd.crosstab(train['Married'], train['Loan_Status'])
Dependents = pd.crosstab(train['Dependents'], train['Loan_Status'])
Education = pd.crosstab(train['Education'], train['Loan_Status'])
Self_Employed = pd.crosstab(train['Self_Employed'], train['Loan_Status'])
Married.div(Married.sum(1).astype(float), axis=0).plot(kind='bar', stacked='True', figsize=(4, 4))
Dependents.div(Dependents.sum(1).astype(float), axis=0).plot(kind='bar', stacked='True', figsize=(4, 4))
Education.div(Education.sum(1).astype(float), axis=0).plot(kind="bar", stacked=True, figsize=(4, 4))
Self_Employed.div(Self_Employed.sum(1).astype(float), axis=0).plot(kind="bar", stacked=True, figsize=(4, 4))
# Lets look at the relationship between remaining categorical independent variables and Loan_Status.
Credit_History = pd.crosstab(train['Credit_History'], train['Loan_Status'])
Property_Area = pd.crosstab(train['Property_Area'], train['Loan_Status'])
Credit_History.div(Credit_History.sum(1).astype(float), axis=0).plot(kind="bar", stacked=True, figsize=(4, 4))
Property_Area.div(Property_Area.sum(1).astype(float), axis=0).plot(kind="bar", stacked=True)
# let’s visualize numerical independent variables with respect to target variable.
train.groupby('Loan_Status')['ApplicantIncome'].mean().plot.bar()
bins = [0, 2500, 4000, 6000, 81000]
group = ['HIgh', 'Average', 'Low', 'Very high']
train['Income_bin'] = pd.cut(train['ApplicantIncome'], bins, right=True, labels=group)
Income_bin = pd.crosstab(train['Income_bin'], train['Loan_Status'])
Income_bin.div(Income_bin.sum(1).astype(float), axis=0).plot(kind="bar", stacked=True)
plt.xlabel('ApplicantIncome')
P = plt.ylabel('Percentage')
Income_bin = pd.crosstab(train['Income_bin'], train['Loan_Status'])
Income_bin.div(Income_bin.sum(1).astype(float), axis=0).plot(kind="bar", stacked=True)
plt.xlabel('ApplicantIncome')
plt.ylabel('Percentage')
# We will analyze the coapplicant income and loan amount variable in similar manner.
bins = [0, 1000, 3000, 42000]
group = ['Low', 'Average', 'High']
train['Coapplicant_Income_bin'] = pd.cut(train['CoapplicantIncome'], bins, include_lowest=True, labels=group)
Coapplicant_Income_bin = pd.crosstab(train['Coapplicant_Income_bin'], train['Loan_Status'])
Coapplicant_Income_bin.div(Coapplicant_Income_bin.sum(1).astype(float), axis=0).plot(kind="bar", stacked=True)
plt.xlabel('CoapplicantIncome')
P = plt.ylabel('Percentage')
# Let us combine the Applicant Income and Coapplicant Income and see the combined effect of
# Total Income on the Loan_Status.
train['Total_Income'] = train['ApplicantIncome'] + train['CoapplicantIncome']
bins = [0, 2500, 4000, 6000, 81000]
group = ['Very High', 'High', 'Low', 'Average']
train['Total_Income_bin'] = pd.cut(train['Total_Income'], bins, labels=group)
Total_Income_bin = pd.crosstab(train['Total_Income_bin'], train['Loan_Status'])
Total_Income_bin.div(Total_Income_bin.sum(1).astype(float), axis=0).plot(kind="bar", stacked=True)
plt.xlabel('Total_Income')
P = plt.ylabel('Percentage')
# Let’s visualize the Loan amount variable.
bins = [0, 100, 200, 700]
group = ['Average', 'Low', 'High']
train['LoanAmount_bin'] = pd.cut(train['LoanAmount'], bins, labels=group)
LoanAmount_bin = pd.crosstab(train['LoanAmount_bin'], train['Loan_Status'])
LoanAmount_bin.div(LoanAmount_bin.sum(1).astype(float), axis=0).plot(kind="bar", stacked=True)
plt.xlabel('LoanAmount')
P = plt.ylabel('Percentage')
train = train.drop(['Income_bin', 'Coapplicant_Income_bin', 'LoanAmount_bin', 'Total_Income_bin', 'Total_Income'],
axis=1)
train['Dependents'].replace('3+', 3, inplace=True)
test['Dependents'].replace('3+', 3, inplace=True)
train['Loan_Status'].replace('N', 0, inplace=True)
train['Loan_Status'].replace('Y', 1, inplace=True)
# lets look at the correlation between all the numerical variables
# The variables with darker color means their correlation is more.
matrix = train.corr()
f, ax = plt.subplots(figsize=(9, 6))
sns.heatmap(matrix, vmax=.8, square=True, cmap="BuPu");
# Model Building : Part I
# Let us make our model to predict the target variable.
# We will start with Logistic Regression which is used for predicting binary outcome.
# Lets drop the Loan_ID variable as it do not have any effect on the loan status
train = train.drop('Loan_ID', axis=1)
test = test.drop('Loan_ID', axis=1)
X = train.drop('Loan_Status', 1)
y = train.Loan_Status
# we will make dummy variables for the categorical variables
X = pd.get_dummies(X)
train = pd.get_dummies(train)
test = pd.get_dummies(test)
# We will use the train_test_split function from sklearn to divide our train dataset.
from sklearn.model_selection import train_test_split
x_train, x_cv, y_train, y_cv = train_test_split(X, y, test_size=0.3)
# The dataset has been divided into training and validation part.
# Let us import LogisticRegression and accuracy_score from sklearn and fit the logistic regression model.
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
model = LogisticRegression()
model.fit(x_train, y_train)
# Let’s predict the Loan_Status for validation set and calculate its accuracy.
pred_cv = model.predict(x_cv)
# Let us calculate how accurate our predictions are by calculating the accuracy.
accuracy_score(y_cv, pred_cv)
# Let’s make predictions for the test dataset.
pred_test = model.predict(test)
# Lets import the submission file which we have to submit on the solution checker.
submission = pd.read_csv("Sample_Submission_ZAuTl8O_FK3zQHh.csv")
# We only need the Loan_ID and the corresponding Loan_Status for the final submission.
# we will fill these columns with the Loan_ID of test dataset and the predictions that we made
submission['Loan_Status'] = pred_test
submission['Loan_ID'] = test_original['Loan_ID']
# Logistic Regression using stratified k-folds cross validation
from sklearn.model_selection import StratifiedKFold
# Now let’s make a cross validation logistic model with stratified 5 folds and make predictions for test dataset.
i = 1
kf = StratifiedKFold(n_splits=5, random_state=1, shuffle=True)
for train_index, test_index in kf.split(X, y):
print('\n{} of kfold {}'.format(i, kf.n_splits))
xtr, xvl = X.loc[train_index], X.loc[test_index]
ytr, yvl = y[train_index], y[test_index]
model = LogisticRegression(random_state=1)
model.fit(xtr, ytr)
pred_test = model.predict(xvl)
score = accuracy_score(yvl, pred_test)
print('accuracy_score', score)
i += 1
pred_test = model.predict(test)
pred = model.predict_proba(xvl)[:, 1]
# The mean validation accuracy for this model turns out to be 0.81. Let us visualize the roc curve.
from sklearn import metrics
fpr, tpr, _ = metrics.roc_curve(yvl, pred)
auc = metrics.roc_auc_score(yvl, pred)
plt.figure(figsize=(12, 8))
plt.plot(fpr, tpr, label="validation, auc=" + str(auc))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend(loc=4)
submission['Loan_Status'] = pred_test
submission['Loan_ID'] = test_original['Loan_ID']
# Remember we need predictions in Y and N. So let’s convert 1 and 0 to Y and N.
submission['Loan_Status'].replace(0, 'N', inplace=True)
submission['Loan_Status'].replace(1, 'Y', inplace=True)
# Lets convert the submission to .csv format and make submission to check the accuracy on the leaderboard.
pd.DataFrame(submission, columns=['Loan_ID', 'Loan_Status']).to_csv('Logistic1.csv')
train['Total_Income'] = train['ApplicantIncome'] + train['CoapplicantIncome']
test['Total_Income'] = test['ApplicantIncome'] + test['CoapplicantIncome']
# Let’s check the distribution of Total Income.
sns.distplot(train['Total_Income']);
# let’s take the log transformation to make the distribution normal.
train['Total_Income_log'] = np.log(train['Total_Income'])
sns.distplot(train['Total_Income_log']);
test['Total_Income_log'] = np.log(test['Total_Income'])
# Now the distribution looks much closer to normal and effect of extreme values has been significantly subsided.
# Let’s create the EMI feature now.
train['EMI'] = train['LoanAmount'] / train['Loan_Amount_Term']
test['EMI'] = test['LoanAmount'] / test['Loan_Amount_Term']
# Let’s check the distribution of EMI variable.
sns.distplot(train['EMI']);
# Let us create Balance Income feature now and check its distribution.
train['Balance Income'] = train['Total_Income'] - (train['EMI'] * 1000) # Multiply with 1000 to make the units equal
test['Balance Income'] = test['Total_Income'] - (test['EMI'] * 1000)
sns.distplot(train['Balance Income']);
train = train.drop(['ApplicantIncome', 'CoapplicantIncome', 'LoanAmount', 'Loan_Amount_Term'], axis=1)
test = test.drop(['ApplicantIncome', 'CoapplicantIncome', 'LoanAmount', 'Loan_Amount_Term'], axis=1)
X = train.drop('Loan_Status', 1)
y = train.Loan_Status
# Logistic Regression
i = 1
kf = StratifiedKFold(n_splits=5, random_state=1, shuffle=True)
for train_index, test_index in kf.split(X, y):
print('\n{} of kfold {}'.format(i, kf.n_splits))
xtr, xvl = X.loc[train_index], X.loc[test_index]
ytr, yvl = y[train_index], y[test_index]
model = LogisticRegression(random_state=1)
model.fit(xtr, ytr)
pred_test = model.predict(xvl)
score = accuracy_score(yvl, pred_test)
print('accuracy_score', score)
i += 1
pred_test = model.predict(test)
pred = model.predict_proba(xvl)[:, 1]
submission['Loan_Status'] = pred_test # filling Loan_Status with predictions
submission['Loan_ID'] = test_original['Loan_ID'] # filling Loan_ID with test Loan_ID
# replacing 0 and 1 with N and Y
submission['Loan_Status'].replace(0, 'N', inplace=True)
submission['Loan_Status'].replace(1, 'Y', inplace=True)
# Converting submission file to .csv format
pd.DataFrame(submission, columns=['Loan_ID', 'Loan_Status']).to_csv('Log2.csv')
from sklearn import tree
i = 1
kf = StratifiedKFold(n_splits=5, random_state=1, shuffle=True)
for train_index, test_index in kf.split(X, y):
print('\n{} of kfold {}'.format(i, kf.n_splits))
xtr, xvl = X.loc[train_index], X.loc[test_index]
ytr, yvl = y[train_index], y[test_index]
model = tree.DecisionTreeClassifier(random_state=1)
model.fit(xtr, ytr)
pred_test = model.predict(xvl)
score = accuracy_score(yvl, pred_test)
print('accuracy_score', score)
i += 1
pred_test = model.predict(test)
submission['Loan_Status'] = pred_test # filling Loan_Status with predictions
submission['Loan_ID'] = test_original['Loan_ID'] # filling Loan_ID with test Loan_ID
# replacing 0 and 1 with N and Y
submission['Loan_Status'].replace(0, 'N', inplace=True)
submission['Loan_Status'].replace(1, 'Y', inplace=True)
# Converting submission file to .csv format
pd.DataFrame(submission, columns=['Loan_ID', 'Loan_Status']).to_csv('Decision Tree.csv')
# Random Forest
from sklearn.ensemble import RandomForestClassifier
i = 1
kf = StratifiedKFold(n_splits=5, random_state=1, shuffle=True)
for train_index, test_index in kf.split(X, y):
print('\n{} of kfold {}'.format(i, kf.n_splits))
xtr, xvl = X.loc[train_index], X.loc[test_index]
ytr, yvl = y[train_index], y[test_index]
model = RandomForestClassifier(random_state=1, max_depth=10)
model.fit(xtr, ytr)
pred_test = model.predict(xvl)
score = accuracy_score(yvl, pred_test)
print('accuracy_score', score)
i += 1
pred_test = model.predict(test)
# We will tune the max_depth and n_estimators parameters. max_depth decides the maximum depth of the tree and
# n_estimators decides the number of trees that will be used in random forest model.
from sklearn.model_selection import GridSearchCV
# Provide range for max_depth from 1 to 20 with an interval of 2 and from 1 to 200 with an
# interval of 20 for n_estimators
paramgrid = {'max_depth': list(range(1, 20, 2)), 'n_estimators': list(range(1, 200, 20))}
grid_search = GridSearchCV(RandomForestClassifier(random_state=1), paramgrid)
from sklearn.model_selection import train_test_split
x_train, x_cv, y_train, y_cv = train_test_split(X, y, test_size=0.3, random_state=1)
# Fit the grid search model
grid_search.fit(x_train, y_train)
GridSearchCV(cv=None, error_score='raise',
estimator=RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=1, verbose=0, warm_start=False),
fit_params=None, iid=True, n_jobs=1,
param_grid={'max_depth': [1, 3, 5, 7, 9, 11, 13, 15, 17, 19],
'n_estimators': [1, 21, 41, 61, 81, 101, 121, 141, 161, 181]},
pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
scoring=None, verbose=0)
# Estimating the optimized value
grid_search.best_estimator_
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=3, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=41, n_jobs=1,
oob_score=False, random_state=1, verbose=0, warm_start=False)
# So, the optimized value for the max_depth variable is 3 and for n_estimator is 41.
# Now let’s build the model using these optimized values.
i = 1
kf = StratifiedKFold(n_splits=5, random_state=1, shuffle=True)
for train_index, test_index in kf.split(X, y):
print('\n{} of kfold {}'.format(i, kf.n_splits))
xtr, xvl = X.loc[train_index], X.loc[test_index]
ytr, yvl = y[train_index], y[test_index]
model = RandomForestClassifier(random_state=1, max_depth=3, n_estimators=41)
model.fit(xtr, ytr)
pred_test = model.predict(xvl)
score = accuracy_score(yvl, pred_test)
print('accuracy_score', score)
i += 1
pred_test = model.predict(test)
pred2 = model.predict_proba(test)[:, 1]
submission['Loan_Status'] = pred_test # filling Loan_Status with predictions
submission['Loan_ID'] = test_original['Loan_ID'] # filling Loan_ID with test Loan_ID
# replacing 0 and 1 with N and Y
submission['Loan_Status'].replace(0, 'N', inplace=True)
submission['Loan_Status'].replace(1, 'Y', inplace=True)
# Converting submission file to .csv format
pd.DataFrame(submission, columns=['Loan_ID', 'Loan_Status']).to_csv('Random Forest.csv')
# Let us find the feature importance now, i.e. which features are most important for this problem.
# We will use featureimportances attribute of sklearn to do so.
importances = pd.Series(model.feature_importances_, index=X.columns)
importances.plot(kind='barh', figsize=(12, 8))
plt.show()