forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchat.py
76 lines (66 loc) · 3.54 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import os
import torch
import time
from transformers import AutoTokenizer
from ipex_llm.transformers import AutoModelForCausalLM, init_pipeline_parallel
init_pipeline_parallel()
torch.manual_seed(1234)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for large vision language model')
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen-VL-Chat",
help='The huggingface repo id for the Qwen-VL-Chat model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--image-url-or-path', type=str,
default="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg",
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="这是什么?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--low-bit', type=str, default='sym_int4', help='The quantization type the model will convert to.')
parser.add_argument('--gpu-num', type=int, default=2, help='GPU number to use')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
image_path = args.image_url_or_path
# Load model
# For successful IPEX-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_low_bit=args.low_bit,
optimize_model=True,
trust_remote_code=True,
use_cache=True,
torch_dtype=torch.float32,
modules_to_not_convert=['c_fc', 'out_proj'],
pipeline_parallel_stages=args.gpu_num)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
local_rank = torch.distributed.get_rank()
all_input = [{'image': args.image_url_or_path}, {'text': args.prompt}]
input_list = [_input for _input in all_input if list(_input.values())[0] != '']
query = tokenizer.from_list_format(input_list)
with torch.inference_mode():
response, _ = model.chat(tokenizer, query=query, history=[])
torch.xpu.synchronize()
if local_rank == args.gpu_num - 1:
print('-'*20, 'Input', '-'*20)
print(f'Message: {all_input}')
print('-'*20, 'Output', '-'*20)
print(response)