|
| 1 | +/**********************************************************************************/ |
| 2 | +/* This file is part of spla project */ |
| 3 | +/* https://github.com/JetBrains-Research/spla */ |
| 4 | +/**********************************************************************************/ |
| 5 | +/* MIT License */ |
| 6 | +/* */ |
| 7 | +/* Copyright (c) 2025 SparseLinearAlgebra */ |
| 8 | +/* */ |
| 9 | +/* Permission is hereby granted, free of charge, to any person obtaining a copy */ |
| 10 | +/* of this software and associated documentation files (the "Software"), to deal */ |
| 11 | +/* in the Software without restriction, including without limitation the rights */ |
| 12 | +/* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell */ |
| 13 | +/* copies of the Software, and to permit persons to whom the Software is */ |
| 14 | +/* furnished to do so, subject to the following conditions: */ |
| 15 | +/* */ |
| 16 | +/* The above copyright notice and this permission notice shall be included in all */ |
| 17 | +/* copies or substantial portions of the Software. */ |
| 18 | +/* */ |
| 19 | +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR */ |
| 20 | +/* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, */ |
| 21 | +/* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE */ |
| 22 | +/* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER */ |
| 23 | +/* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, */ |
| 24 | +/* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE */ |
| 25 | +/* SOFTWARE. */ |
| 26 | +/**********************************************************************************/ |
| 27 | + |
| 28 | +#ifndef SPLA_CL_VECTOR_EMULT_HPP |
| 29 | +#define SPLA_CL_VECTOR_EMULT_HPP |
| 30 | + |
| 31 | +#include <schedule/schedule_tasks.hpp> |
| 32 | + |
| 33 | +#include <core/dispatcher.hpp> |
| 34 | +#include <core/registry.hpp> |
| 35 | +#include <core/top.hpp> |
| 36 | +#include <core/tscalar.hpp> |
| 37 | +#include <core/ttype.hpp> |
| 38 | +#include <core/tvector.hpp> |
| 39 | + |
| 40 | +#include <opencl/cl_counter.hpp> |
| 41 | +#include <opencl/cl_fill.hpp> |
| 42 | +#include <opencl/cl_formats.hpp> |
| 43 | +#include <opencl/generated/auto_vector_emult.hpp> |
| 44 | + |
| 45 | +namespace spla { |
| 46 | + |
| 47 | + template<typename T> |
| 48 | + class Algo_v_emult_cl final : public RegistryAlgo { |
| 49 | + public: |
| 50 | + ~Algo_v_emult_cl() override = default; |
| 51 | + |
| 52 | + std::string get_name() override { |
| 53 | + return "v_emult"; |
| 54 | + } |
| 55 | + |
| 56 | + std::string get_description() override { |
| 57 | + return "parallel vector element-wise mult on opencl device"; |
| 58 | + } |
| 59 | + |
| 60 | + Status execute(const DispatchContext& ctx) override { |
| 61 | + auto t = ctx.task.template cast_safe<ScheduleTask_v_emult>(); |
| 62 | + ref_ptr<TVector<T>> u = t->u.template cast_safe<TVector<T>>(); |
| 63 | + ref_ptr<TVector<T>> v = t->v.template cast_safe<TVector<T>>(); |
| 64 | + |
| 65 | + if (u->is_valid(FormatVector::AccDense) && v->is_valid(FormatVector::AccDense)) { |
| 66 | + return execute_dn2dn(ctx); |
| 67 | + } |
| 68 | + |
| 69 | + return execute_dn2dn(ctx); |
| 70 | + } |
| 71 | + |
| 72 | + private: |
| 73 | + Status execute_dn2dn(const DispatchContext& ctx) { |
| 74 | + TIME_PROFILE_SCOPE("cl/vector_emult_dn2dn"); |
| 75 | + |
| 76 | + auto t = ctx.task.template cast_safe<ScheduleTask_v_emult>(); |
| 77 | + ref_ptr<TVector<T>> r = t->r.template cast_safe<TVector<T>>(); |
| 78 | + ref_ptr<TVector<T>> u = t->u.template cast_safe<TVector<T>>(); |
| 79 | + ref_ptr<TVector<T>> v = t->v.template cast_safe<TVector<T>>(); |
| 80 | + ref_ptr<TOpBinary<T, T, T>> op = t->op.template cast_safe<TOpBinary<T, T, T>>(); |
| 81 | + |
| 82 | + std::shared_ptr<CLProgram> program; |
| 83 | + if (!ensure_kernel(op, program)) return Status::CompilationError; |
| 84 | + |
| 85 | + r->validate_wd(FormatVector::AccDense); |
| 86 | + u->validate_rw(FormatVector::AccDense); |
| 87 | + v->validate_rw(FormatVector::AccDense); |
| 88 | + |
| 89 | + auto* p_cl_r = r->template get<CLDenseVec<T>>(); |
| 90 | + const auto* p_cl_u = u->template get<CLDenseVec<T>>(); |
| 91 | + const auto* p_cl_v = v->template get<CLDenseVec<T>>(); |
| 92 | + auto* p_cl_acc = get_acc_cl(); |
| 93 | + auto& queue = p_cl_acc->get_queue_default(); |
| 94 | + |
| 95 | + const uint n = r->get_n_rows(); |
| 96 | + |
| 97 | + auto kernel = program->make_kernel("dense_to_dense"); |
| 98 | + kernel.setArg(0, p_cl_r->Ax); |
| 99 | + kernel.setArg(1, p_cl_u->Ax); |
| 100 | + kernel.setArg(2, p_cl_v->Ax); |
| 101 | + kernel.setArg(3, n); |
| 102 | + kernel.setArg(4, r->get_fill_value()); |
| 103 | + |
| 104 | + cl::NDRange global(p_cl_acc->get_default_wgs() * div_up_clamp(n, p_cl_acc->get_default_wgs(), 1u, 1024u)); |
| 105 | + cl::NDRange local(p_cl_acc->get_default_wgs()); |
| 106 | + queue.enqueueNDRangeKernel(kernel, cl::NullRange, global, local); |
| 107 | + |
| 108 | + return Status::Ok; |
| 109 | + } |
| 110 | + |
| 111 | + bool ensure_kernel(const ref_ptr<TOpBinary<T, T, T>>& op, std::shared_ptr<CLProgram>& program) { |
| 112 | + CLProgramBuilder program_builder; |
| 113 | + program_builder |
| 114 | + .set_name("vector_emult") |
| 115 | + .add_type("TYPE", get_ttype<T>().template as<Type>()) |
| 116 | + .add_op("OP_BINARY", op.template as<OpBinary>()) |
| 117 | + .set_source(source_vector_emult) |
| 118 | + .acquire(); |
| 119 | + |
| 120 | + program = program_builder.get_program(); |
| 121 | + |
| 122 | + return true; |
| 123 | + } |
| 124 | + }; |
| 125 | + |
| 126 | +}// namespace spla |
| 127 | + |
| 128 | +#endif |
0 commit comments