Skip to content

Commit 1e30a2d

Browse files
Adding a gradio demo of SVD to be run locally (#144)
* Adding a gradio demo of SVD to be run locally * Update gradio_app.py * Create svd_xt_1_1.yaml * Update pt2.txt --------- Co-authored-by: Sumith Kulal <[email protected]>
1 parent 9d75932 commit 1e30a2d

File tree

4 files changed

+431
-0
lines changed

4 files changed

+431
-0
lines changed

README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -24,6 +24,7 @@
2424
We use the standard image encoder from SD 2.1, but replace the decoder with a temporally-aware `deflickering decoder`.
2525
- [SVD-XT](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt): Same architecture as `SVD` but finetuned
2626
for 25 frame generation.
27+
- You can run the community-build gradio demo locally by running `python -m scripts.demo.gradio_app`.
2728
- We provide a streamlit demo `scripts/demo/video_sampling.py` and a standalone python script `scripts/sampling/simple_video_sample.py` for inference of both models.
2829
- Alongside the model, we release a [technical report](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets).
2930

requirements/pt2.txt

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -37,4 +37,5 @@ wandb>=0.15.6
3737
webdataset>=0.2.33
3838
wheel>=0.41.0
3939
xformers>=0.0.20
40+
gradio
4041
streamlit-keyup==0.2.0

scripts/demo/gradio_app.py

Lines changed: 283 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,283 @@
1+
# Adding this at the very top of app.py to make 'generative-models' directory discoverable
2+
import sys
3+
import os
4+
sys.path.append(os.path.join(os.path.dirname(__file__), 'generative-models'))
5+
6+
import math
7+
from glob import glob
8+
from pathlib import Path
9+
from typing import Optional
10+
11+
import cv2
12+
import numpy as np
13+
import torch
14+
from einops import rearrange, repeat
15+
from fire import Fire
16+
from omegaconf import OmegaConf
17+
from PIL import Image
18+
from torchvision.transforms import ToTensor
19+
20+
from scripts.util.detection.nsfw_and_watermark_dectection import \
21+
DeepFloydDataFiltering
22+
from sgm.inference.helpers import embed_watermark
23+
from sgm.util import default, instantiate_from_config
24+
from scripts.sampling.simple_video_sample import load_model, get_unique_embedder_keys_from_conditioner, get_batch
25+
26+
import gradio as gr
27+
import uuid
28+
import random
29+
from huggingface_hub import hf_hub_download
30+
31+
# To download all svd models
32+
#hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt", filename="svd_xt.safetensors", local_dir="checkpoints")
33+
#hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid", filename="svd.safetensors", local_dir="checkpoints")
34+
#hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt-1-1", filename="svd_xt_1_1.safetensors", local_dir="checkpoints")
35+
36+
37+
# Define the repo, local directory and filename
38+
repo_id="stabilityai/stable-video-diffusion-img2vid-xt-1-1" # replace with "stabilityai/stable-video-diffusion-img2vid-xt" or "stabilityai/stable-video-diffusion-img2vid" for other models
39+
filename = "svd_xt_1_1.safetensors" # replace with "svd_xt.safetensors" or "svd.safetensors" for other models
40+
local_dir = "checkpoints"
41+
local_file_path = os.path.join(local_dir, filename)
42+
43+
# Check if the file already exists
44+
if not os.path.exists(local_file_path):
45+
# If the file doesn't exist, download it
46+
hf_hub_download(
47+
repo_id=repo_id,
48+
filename=filename,
49+
local_dir=local_dir
50+
)
51+
print("File downloaded.")
52+
else:
53+
print("File already exists. No need to download.")
54+
55+
56+
version = "svd_xt_1_1" # replace with 'svd_xt' or 'svd' for other models
57+
device = "cuda"
58+
max_64_bit_int = 2**63 - 1
59+
60+
if version == "svd_xt_1_1":
61+
num_frames = 25
62+
num_steps = 30
63+
model_config = "scripts/sampling/configs/svd_xt_1_1.yaml"
64+
else:
65+
raise ValueError(f"Version {version} does not exist.")
66+
67+
model, filter = load_model(
68+
model_config,
69+
device,
70+
num_frames,
71+
num_steps,
72+
)
73+
74+
def sample(
75+
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
76+
seed: Optional[int] = None,
77+
randomize_seed: bool = True,
78+
motion_bucket_id: int = 127,
79+
fps_id: int = 6,
80+
version: str = "svd_xt_1_1",
81+
cond_aug: float = 0.02,
82+
decoding_t: int = 7, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
83+
device: str = "cuda",
84+
output_folder: str = "outputs",
85+
progress=gr.Progress(track_tqdm=True)
86+
):
87+
"""
88+
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
89+
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
90+
"""
91+
fps_id = int(fps_id ) #casting float slider values to int)
92+
if(randomize_seed):
93+
seed = random.randint(0, max_64_bit_int)
94+
95+
torch.manual_seed(seed)
96+
97+
path = Path(input_path)
98+
all_img_paths = []
99+
if path.is_file():
100+
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
101+
all_img_paths = [input_path]
102+
else:
103+
raise ValueError("Path is not valid image file.")
104+
elif path.is_dir():
105+
all_img_paths = sorted(
106+
[
107+
f
108+
for f in path.iterdir()
109+
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
110+
]
111+
)
112+
if len(all_img_paths) == 0:
113+
raise ValueError("Folder does not contain any images.")
114+
else:
115+
raise ValueError
116+
117+
for input_img_path in all_img_paths:
118+
with Image.open(input_img_path) as image:
119+
if image.mode == "RGBA":
120+
image = image.convert("RGB")
121+
w, h = image.size
122+
123+
if h % 64 != 0 or w % 64 != 0:
124+
width, height = map(lambda x: x - x % 64, (w, h))
125+
image = image.resize((width, height))
126+
print(
127+
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
128+
)
129+
130+
image = ToTensor()(image)
131+
image = image * 2.0 - 1.0
132+
133+
image = image.unsqueeze(0).to(device)
134+
H, W = image.shape[2:]
135+
assert image.shape[1] == 3
136+
F = 8
137+
C = 4
138+
shape = (num_frames, C, H // F, W // F)
139+
if (H, W) != (576, 1024):
140+
print(
141+
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
142+
)
143+
if motion_bucket_id > 255:
144+
print(
145+
"WARNING: High motion bucket! This may lead to suboptimal performance."
146+
)
147+
148+
if fps_id < 5:
149+
print("WARNING: Small fps value! This may lead to suboptimal performance.")
150+
151+
if fps_id > 30:
152+
print("WARNING: Large fps value! This may lead to suboptimal performance.")
153+
154+
value_dict = {}
155+
value_dict["motion_bucket_id"] = motion_bucket_id
156+
value_dict["fps_id"] = fps_id
157+
value_dict["cond_aug"] = cond_aug
158+
value_dict["cond_frames_without_noise"] = image
159+
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
160+
value_dict["cond_aug"] = cond_aug
161+
162+
with torch.no_grad():
163+
with torch.autocast(device):
164+
batch, batch_uc = get_batch(
165+
get_unique_embedder_keys_from_conditioner(model.conditioner),
166+
value_dict,
167+
[1, num_frames],
168+
T=num_frames,
169+
device=device,
170+
)
171+
c, uc = model.conditioner.get_unconditional_conditioning(
172+
batch,
173+
batch_uc=batch_uc,
174+
force_uc_zero_embeddings=[
175+
"cond_frames",
176+
"cond_frames_without_noise",
177+
],
178+
)
179+
180+
for k in ["crossattn", "concat"]:
181+
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
182+
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
183+
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
184+
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
185+
186+
randn = torch.randn(shape, device=device)
187+
188+
additional_model_inputs = {}
189+
additional_model_inputs["image_only_indicator"] = torch.zeros(
190+
2, num_frames
191+
).to(device)
192+
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
193+
194+
def denoiser(input, sigma, c):
195+
return model.denoiser(
196+
model.model, input, sigma, c, **additional_model_inputs
197+
)
198+
199+
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
200+
model.en_and_decode_n_samples_a_time = decoding_t
201+
samples_x = model.decode_first_stage(samples_z)
202+
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
203+
204+
os.makedirs(output_folder, exist_ok=True)
205+
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
206+
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
207+
writer = cv2.VideoWriter(
208+
video_path,
209+
cv2.VideoWriter_fourcc(*"mp4v"),
210+
fps_id + 1,
211+
(samples.shape[-1], samples.shape[-2]),
212+
)
213+
214+
samples = embed_watermark(samples)
215+
samples = filter(samples)
216+
vid = (
217+
(rearrange(samples, "t c h w -> t h w c") * 255)
218+
.cpu()
219+
.numpy()
220+
.astype(np.uint8)
221+
)
222+
for frame in vid:
223+
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
224+
writer.write(frame)
225+
writer.release()
226+
227+
return video_path, seed
228+
229+
230+
def resize_image(image_path, output_size=(1024, 576)):
231+
image = Image.open(image_path)
232+
# Calculate aspect ratios
233+
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
234+
image_aspect = image.width / image.height # Aspect ratio of the original image
235+
236+
# Resize then crop if the original image is larger
237+
if image_aspect > target_aspect:
238+
# Resize the image to match the target height, maintaining aspect ratio
239+
new_height = output_size[1]
240+
new_width = int(new_height * image_aspect)
241+
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
242+
# Calculate coordinates for cropping
243+
left = (new_width - output_size[0]) / 2
244+
top = 0
245+
right = (new_width + output_size[0]) / 2
246+
bottom = output_size[1]
247+
else:
248+
# Resize the image to match the target width, maintaining aspect ratio
249+
new_width = output_size[0]
250+
new_height = int(new_width / image_aspect)
251+
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
252+
# Calculate coordinates for cropping
253+
left = 0
254+
top = (new_height - output_size[1]) / 2
255+
right = output_size[0]
256+
bottom = (new_height + output_size[1]) / 2
257+
258+
# Crop the image
259+
cropped_image = resized_image.crop((left, top, right, bottom))
260+
261+
return cropped_image
262+
263+
with gr.Blocks() as demo:
264+
gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets))
265+
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). Generation takes ~60s in an A100. [Join the waitlist for Stability's upcoming web experience](https://stability.ai/contact).
266+
''')
267+
with gr.Row():
268+
with gr.Column():
269+
image = gr.Image(label="Upload your image", type="filepath")
270+
generate_btn = gr.Button("Generate")
271+
video = gr.Video()
272+
with gr.Accordion("Advanced options", open=False):
273+
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
274+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
275+
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
276+
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
277+
278+
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
279+
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
280+
281+
if __name__ == "__main__":
282+
demo.queue(max_size=20)
283+
demo.launch(share=True)

0 commit comments

Comments
 (0)