-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_run.py
443 lines (417 loc) · 17.7 KB
/
simple_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import os
import sys
import time
import tensorflow as tf
import pandas as pd
import numpy as np
from enum import Enum
from utils.sth import sth
from utils.replay_buffer import ReplayBuffer
from tensorflow.python.tools import freeze_graph
from tensorflow.python.tools import inspect_checkpoint as chkp
from mlagents.envs import UnityEnvironment
if sys.platform.startswith('win'):
import win32api
import win32con
EXIT = False
np.set_printoptions(threshold=10)
pd.set_option('max_colwidth', 0)
possible_output_nodes = ['out/Action']
class algorithms(Enum):
ppo_sep_ac = 1 # AC, stochastic
ppo_com = 2 # AC, stochastic
# boundary, about the way of calculate `discounted reward`
sac = 3 # AC+Q, stochastic, off-policy
sac_no_v = 4
ddpg = 5 # AC+Q, deterministic, off-policy
td3 = 6 # AC+Q, deterministic, off-policy
train_config = {
# choose algorithm
'algorithm': algorithms.sac,
'init_max_step': 300,
# use for both on-policy and off-policy, control the max step within one episode.
'max_step': 2500,
'max_episode': 50000,
'max_sample_time': 20,
'till_all_done': True, # use for on-policy leanring
# train mode, .exe or unity-client && train or inference
'train': True,
'unity_mode': True,
'unity_file': '',
'port': 5008,
# shuffle batch or not
'random_batch': True,
'batchsize': 100,
'epoch': 10,
# some sets about using replay_buffer
'use_replay_buffer': True, # on-policy or off-policy
'use_priority': False,
'buffer_size': 10000,
'buffer_batch_size': 100,
'max_learn_time': 20
}
hyper_config = {
# set the temperature of SAC, auto adjust or not
'alpha': 0.2,
'auto_adaption': True,
'ployak': 0.995, # range from 0. to 1.
'epsilon': 0.2, # control the learning stepsize of clip-ppo
'beta': 1.0e-3, # coefficient of entropy regularizatione
'lr': 5.0e-4,
'actor_lr': 0.0001,
'critic_lr': 0.0002,
'tp_lr': 0.001,
'reward_lr': 0.001,
'gamma': 0.99,
'lambda': 0.95,
'action_bound': 1,
'decay_rate': 0.7,
'decay_steps': 100,
'stair': False,
'max_episode': 50000,
'base_sigma': 0.1, # only work on stochastic policy
'assign_interval': 4 # not use yet
}
def main():
if sys.platform.startswith('win'):
win32api.SetConsoleCtrlHandler(_win_handler, True)
if train_config['unity_mode']:
env = UnityEnvironment()
else:
env = UnityEnvironment(
file_name=train_config['unity_file'],
no_graphics=True if train_config['train'] else False,
base_port=train_config['port']
)
brain_name = env.external_brain_names[0]
brain = env.brains[brain_name]
# set the memory use proportion of GPU
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = True
# tf_config.gpu_options.per_process_gpu_memory_fraction = 0.5
tf.reset_default_graph()
graph = tf.Graph()
with graph.as_default() as g:
with tf.Session(graph=g, config=tf_config) as sess:
print('Algorithm: {0}'.format(
train_config['algorithm'].name))
if train_config['algorithm'] == algorithms.ppo_sep_ac:
from ppo.ppo_base import PPO_SEP
model = PPO_SEP(
sess=sess,
s_dim=brain.vector_observation_space_size,
a_counts=brain.vector_action_space_size[0],
hyper_config=hyper_config
)
print('PPO_SEP initialize success.')
elif train_config['algorithm'] == algorithms.ppo_com:
from ppo.ppo_base import PPO_COM
model = PPO_COM(
sess=sess,
s_dim=brain.vector_observation_space_size,
a_counts=brain.vector_action_space_size[0],
hyper_config=hyper_config
)
print('PPO_COM initialize success.')
elif train_config['algorithm'] == algorithms.sac:
from sac.sac import SAC
model = SAC(
sess=sess,
s_dim=brain.vector_observation_space_size,
a_counts=brain.vector_action_space_size[0],
hyper_config=hyper_config
)
print('SAC initialize success.')
elif train_config['algorithm'] == algorithms.sac_no_v:
from sac.sac_no_v import SAC_NO_V
model = SAC_NO_V(
sess=sess,
s_dim=brain.vector_observation_space_size,
a_counts=brain.vector_action_space_size[0],
hyper_config=hyper_config
)
print('SAC_NO_V initialize success.')
elif train_config['algorithm'] == algorithms.ddpg:
from ddpg.ddpg import DDPG
model = DDPG(
sess=sess,
s_dim=brain.vector_observation_space_size,
a_counts=brain.vector_action_space_size[0],
hyper_config=hyper_config
)
print('DDPG initialize success.')
elif train_config['algorithm'] == algorithms.td3:
from td3.td3 import TD3
model = TD3(
sess=sess,
s_dim=brain.vector_observation_space_size,
a_counts=brain.vector_action_space_size[0],
hyper_config=hyper_config
)
print('TD3 initialize success.')
sess.run(tf.global_variables_initializer())
try:
if train_config['train']:
train_OnPolicy(
sess=sess,
env=env,
brain_name=brain_name,
begin_episode=0,
model=model,
hyper_config=hyper_config,
train_config=train_config
) if not train_config['use_replay_buffer'] else train_OffPolicy(
sess=sess,
env=env,
brain_name=brain_name,
begin_episode=0,
model=model,
hyper_config=hyper_config,
train_config=train_config
)
else:
inference(env, brain_name, model, train_config)
except Exception as e:
print(e)
finally:
env.close()
sys.exit()
def inference(env, brain_name, model, train_config):
sigma_offset = np.zeros(model.a_counts) + 0.0001
while True:
obs = env.reset(
train_mode=train_config['train'])[brain_name]
state = obs.vector_observations
while True:
_, action = model.choose_inference_action(
s=state, sigma_offset=sigma_offset)
obs = env.step(action)[brain_name]
state = obs.vector_observations
if EXIT:
return
def train_OnPolicy(sess, env, brain_name, begin_episode, model, hyper_config, train_config):
sigma_offset = np.zeros(model.a_counts) + hyper_config['base_sigma']
for episode in range(begin_episode, train_config['max_episode']):
print('-' * 30 + str(episode) + ' ๑乛◡乛๑ ' +
train_config['algorithm'].name + '-' * 30)
if EXIT:
return
step = 0
total_reward = 0.
total_discounted_reward = 0.
discounted_reward = 0
start = time.time()
obs = env.reset(train_mode=True)[
brain_name]
agents_num = len(obs.agents)
end = time.time()
print(f'reset envs cost time: {end - start}')
state_ = obs.vector_observations
dones_flag = np.zeros(agents_num)
start = time.time()
data = {f'{i}': pd.DataFrame(columns=['state', 'action', 'old_prob', 'reward', 'next_state', 'done'])
for i in range(agents_num)}
end = time.time()
print(f'create dataframe cost time: {end - start}')
start = time.time()
while True:
state = state_
prob, action = model.choose_action(
s=state, sigma_offset=sigma_offset)
obs = env.step(action)[brain_name]
step += 1
reward = obs.rewards
state_ = obs.vector_observations
dones_flag += obs.local_done
for i in range(agents_num):
data[f'{i}'] = data[f'{i}'].append({
'state': state[i],
'action': action[i],
'old_prob': prob[i] + 1e-10,
'next_state': state_[i],
'reward': reward[i],
'done': obs.local_done[i]
}, ignore_index=True)
if train_config['till_all_done']:
sample_time = time.time() - start
if all(dones_flag) or sample_time > train_config['max_sample_time']:
train_config['init_max_step'] = step
print(
f'(interactive)collect data cost time: {sample_time}')
break
elif step >= train_config['init_max_step']:
sample_time = time.time() - start
print(
f'(interactive)collect data cost time: {sample_time}')
if sample_time > train_config['max_sample_time']:
train_config['max_step'] = train_config['init_max_step']
break
start = time.time()
dones = 0
hits = 0
for i in range(agents_num):
done_index = data[f'{i}'][data[f'{i}'].done == True].index.tolist()
hit_index = data[f'{i}'][data[f'{i}'].reward > 0].index.tolist()
dones += len(done_index)
hits += len(hit_index)
if len(done_index):
print(
f'[Agent {i}] dones: {len(done_index)} \thits: {len(hit_index)} \thit ratio: {len(hit_index)/len(done_index):.2%}')
else:
print(f'[Agent {i}] no done.')
data[f'{i}']['value'] = model.get_state_value(
s=data[f'{i}']['state'].values.tolist(), sigma_offset=sigma_offset)
value_ = model.get_state_value(
s=[state_[i]], sigma_offset=sigma_offset)
if not data[f'{i}']['done'].values[-1]:
discounted_reward = value_
data[f'{i}']['total_reward'] = sth.discounted_sum(
data[f'{i}']['reward'], 1, data[f'{i}']['reward'].values[-1], done_index, train_config['init_max_step'])
if train_config['algorithm'].value <= 3:
data[f'{i}']['discounted_reward'] = sth.discounted_sum(
data[f'{i}']['reward'], hyper_config['gamma'], discounted_reward, done_index, train_config['init_max_step'])
data[f'{i}']['td_error'] = sth.discounted_sum_minus(
data[f'{i}']['reward'].values,
hyper_config['gamma'],
value_,
done_index,
data[f'{i}']['value'].values,
train_config['init_max_step']
)
data[f'{i}']['advantage'] = sth.discounted_sum(
data[f'{i}']['td_error'],
hyper_config['lambda'] * hyper_config['gamma'],
0,
done_index,
train_config['init_max_step']
)
else:
data[f'{i}']['discounted_reward'] = sth.discounted_sum(
data[f'{i}']['reward'], hyper_config['gamma'], discounted_reward, done_index, train_config['init_max_step'], data[f'{i}']['value'])
data[f'{i}']['advantage'] = None
total_reward += (data[f'{i}']['total_reward'][0] / agents_num)
total_discounted_reward += (data[f'{i}']
['discounted_reward'][0] / agents_num)
if dones:
print(
f'#Agents Num#: {agents_num} \ttotal_dones: {dones} \ttotal_hits: {hits} \tratio: {hits/dones:.2%}')
else:
print(
f'#Agents Num#: {agents_num} \tOMG! ALL AGENTS NO DONE.')
end = time.time()
print(f'calculate cost time: {end - start}')
start = time.time()
for j in range(agents_num):
for _ in range(train_config['epoch']):
for i in range(0, train_config['init_max_step'], train_config['batchsize']):
if train_config['random_batch']:
i_data = data[f'{j}'].sample(
n=train_config['batchsize']) if train_config['batchsize'] < train_config['init_max_step'] else data[f'{j}']
else:
i_data = data[f'{j}'].iloc[i:i
+ train_config['batchsize'], :]
model.learn(
s=i_data['state'].values.tolist(),
a=i_data['action'].values.tolist(),
r=i_data['reward'].values[:, np.newaxis],
s_=i_data['next_state'].values.tolist(),
dc_r=i_data['discounted_reward'].values[:, np.newaxis],
episode=episode,
sigma_offset=sigma_offset,
old_prob=i_data['old_prob'].values.tolist(),
advantage=i_data['advantage'].values[:, np.newaxis]
)
learn_time = time.time() - start
print(f'learn cost time: {learn_time}')
print('episede: {0} steps: {1} dc_reward: {2} reward: {3}'.format(
episode, step, total_discounted_reward, total_reward))
def train_OffPolicy(sess, env, brain_name, begin_episode, model, hyper_config, train_config):
sigma_offset = np.zeros(model.a_counts) + hyper_config['base_sigma']
buffer = ReplayBuffer(model.s_dim, model.a_counts,
train_config['buffer_size'], train_config['use_priority'])
for episode in range(begin_episode, train_config['max_episode']):
print('-' * 30 + str(episode) + ' ๑乛◡乛๑ ' +
train_config['algorithm'].name + '-' * 30)
if EXIT:
return
step = 0
obs = env.reset(train_mode=True)[
brain_name]
agents_num = len(obs.agents)
total_reward = np.zeros(agents_num)
total_discounted_reward = np.zeros(agents_num)
state_ = obs.vector_observations
hits_flag = np.zeros(agents_num, dtype=np.int32)
dones_flag = np.zeros(agents_num, dtype=np.int32)
start = time.time()
while True:
state = state_
prob, action = model.choose_action(
s=state, sigma_offset=sigma_offset)
obs = env.step(action)[brain_name]
step += 1
reward = np.array(obs.rewards)
for i in range(agents_num):
if dones_flag[i] == 0:
total_reward[i] += reward[i]
total_discounted_reward[i] += hyper_config['gamma'] * reward[i]
state_ = obs.vector_observations
hits_flag += np.int64(reward > 0)
dones_flag += obs.local_done
dc_r = reward + hyper_config['gamma'] * model.get_state_value(
s=state_, sigma_offset=sigma_offset)
td_error = dc_r - model.get_state_value(
s=state, sigma_offset=sigma_offset)
advantage = np.zeros(agents_num)
for i in range(agents_num):
buffer.store(
state=state[i],
action=action[i],
prob=prob[i],
reward=reward[i],
discounted_reward=dc_r[i],
td_error=td_error[i],
next_state=state_[i],
advantage=advantage[i],
done=obs.local_done[i]
)
if buffer.buffer_size >= train_config['buffer_size']:
data_from_buffer = buffer.sample_batch(
train_config['buffer_batch_size'])
model.learn(
s=data_from_buffer['state'],
a=data_from_buffer['action'],
r=data_from_buffer['reward'][:, np.newaxis],
s_=data_from_buffer['next_state'],
dc_r=data_from_buffer['discounted_reward'][:, np.newaxis],
episode=episode,
sigma_offset=sigma_offset,
old_prob=data_from_buffer['old_prob'],
advantage=data_from_buffer['advantage'][:, np.newaxis]
)
if all(dones_flag) or step >= train_config['max_step']:
break
learn_time = time.time() - start
print('learn_time: {0}'.format(
learn_time))
dones, hits = np.sum(dones_flag), np.sum(hits_flag)
if dones:
print(
f'#Agents Num#: {agents_num} \ttotal_dones: {dones} \ttotal_hits: {hits} \tratio: {hits/dones:.2%}')
else:
print(
f'#Agents Num#: {agents_num} \tOMG! ALL AGENTS NO DONE.')
print('episede: {0} steps: {1} dc_reward: {2} reward: {3}\n'.format(
episode, step, total_discounted_reward.mean(), total_reward.mean()))
def _win_handler(event):
"""
This function gets triggered after ctrl-c or ctrl-break is pressed
under Windows platform.
"""
if event in (win32con.CTRL_C_EVENT, win32con.CTRL_BREAK_EVENT):
global EXIT
EXIT = True
return True
return False
if __name__ == '__main__':
main()