-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_usage.py
130 lines (113 loc) · 5.61 KB
/
example_usage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"""
TODO Clean examples up, especially training loops (use val/test set, mask out loss on decoding)
"""
from datasets import load_dataset
import numpy as np
from PIL import Image
import torch as th
from torch.utils.data import DataLoader
from simple_transformers.transformer import ModalityEncoder, ModalityEncoderDecoder
def classification_train_loop(model, dataset, input_key, use_pil_images=False):
optimizer = th.optim.Adam(model.parameters(), lr=1e-4)
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)
loss_fn = th.nn.CrossEntropyLoss()
for epoch in range(10):
losses, accuracies = [], []
for batch in dataloader:
optimizer.zero_grad()
if use_pil_images:
model_input = [Image.fromarray(i).convert('RGB') for i in batch[input_key].numpy()]
elif input_key == 'image' and len(batch[input_key].shape) == 3:
model_input = batch[input_key].unsqueeze(1).numpy()
else:
model_input = batch[input_key]
logits = model(model_input)
_, preds = th.max(logits, dim=-1)
loss = loss_fn(logits, batch['label'])
loss.backward()
optimizer.step()
losses += [loss.item()]
accuracies += [th.mean((preds == batch['label']).float()).item()]
print(f'LOSS: {np.mean(losses)}, ACCURACY: {np.mean(accuracies)}')
def text_gen_train_loop(model, dataset):
optimizer = th.optim.Adam(model.parameters(), lr=1e-4)
dataloader = DataLoader(dataset, batch_size=64)
loss_fn = th.nn.CrossEntropyLoss()
for epoch in range(10):
losses, accuracies = [], []
in_string, out_string, gen_string = None, None, None
for batch in dataloader:
optimizer.zero_grad()
_, _, logits, gen_strings = model(batch['translation']['en'], batch['translation']['fr'])
in_string, out_string, gen_string = batch['translation']['en'][0], batch['translation']['fr'][0], \
gen_strings[0]
_, preds = th.max(logits, dim=-1)
labels = model.output_preprocessor.tokenizer(batch['translation']['fr'], padding=True, return_tensors='pt')[
'input_ids']
batch_size, seq_len = labels.shape
# TODO: Loss should be masked too
loss = loss_fn(logits.reshape(batch_size * seq_len, -1), labels.reshape(batch_size * seq_len))
loss.backward()
optimizer.step()
losses += [loss.item()]
# accuracies += [th.mean((preds == batch['label']).float()).item()]
print(f'LOSS: {np.mean(losses)}') # , ACCURACY: {np.mean(accuracies)}')
print(f'Input: {in_string} | Output: {out_string} | Generated: {gen_string}')
def action_gen_train_loop(model, dataset):
optimizer = th.optim.Adam(model.parameters(), lr=1e-4)
dataloader = DataLoader(dataset, batch_size=64, collate_fn=dataset.collate_fn)
loss_fn = th.nn.CrossEntropyLoss()
for epoch in range(50):
losses, accuracies = [], []
true_actions, gen_actions = None, None
for batch in dataloader:
optimizer.zero_grad()
_, _, logits, gen_actions = model(batch['init_state']['input'], batch['actions']['input'], None,
batch['actions']['attention_mask'])
logits = logits[:, :-1]
true_actions = batch['actions']['input'][0]
_, preds = th.max(logits, dim=-1)
labels = th.tensor(batch['actions']['input'], device=logits.device)
batch_size, seq_len = labels.shape
# TODO: Loss should be masked too
loss = loss_fn(logits.reshape(batch_size * seq_len, -1), labels.reshape(batch_size * seq_len))
loss.backward()
optimizer.step()
losses += [loss.item()]
# accuracies += [th.mean((preds == batch['label']).float()).item()]
print(f'LOSS: {np.mean(losses)}, ACCURACY: {np.mean(accuracies)}')
print(true_actions)
print(gen_actions[0])
# MNIST, image classification
def run_mnist(use_pil_images = False):
dataset = load_dataset('mnist', split='train[:1000]')
dataset.set_format(type='numpy', columns=['image', 'label'])
dataset_kwargs = {'num_classes': 10, 'image_size': (224, 224), 'patch_size': (16, 16), 'num_channels': 3} \
if use_pil_images else \
{'num_classes': 10, 'image_size': (28, 28), 'patch_size': (7, 7), 'num_channels': 1}
model = ModalityEncoder('images', **dataset_kwargs)
classification_train_loop(model, dataset, 'image', use_pil_images=use_pil_images)
# SST2, text classification
def run_sst2():
dataset = load_dataset('sst2', split='train[:1000]')
dataset.set_format(type=None, columns=['sentence', 'label'])
dataset_kwargs = {'num_classes': 2, 'max_text_length': 128}
model = ModalityEncoder('text', **dataset_kwargs)
classification_train_loop(model, dataset, 'sentence')
# Small WMT-En-Fr, translation
def run_translation():
dataset = load_dataset('opus100', 'en-fr', split='test[:100]')
# dataset.set_format(type=None, columns='translation')
print(dataset[0])
dataset_kwargs = {'max_text_length': 256}
model = ModalityEncoderDecoder('text', 'text', **dataset_kwargs)
text_gen_train_loop(model, dataset)
# Output actions
def run_traj():
from test_datasets.gscan_test_dataset import gSCAN
from pathlib import Path
dataset = gSCAN(Path('test_datasets'), 'test', gen_action=True)
dataset_kwargs = dataset.get_kwargs()
model = ModalityEncoderDecoder('init_state', 'actions', **dataset_kwargs)
action_gen_train_loop(model, dataset)
run_sst2()