-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
367 lines (227 loc) · 11.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import pickle
import streamlit as st
from streamlit_option_menu import option_menu
# loading the saved models
diabetes_model = pickle.load(open("./models/diabetes_model_new.sav",'rb'))
heart_model = pickle.load(open("./models/heart_disease_model.sav",'rb'))
parkinsons_model = pickle.load(open("./models/parkinsons_model.sav",'rb'))
breast_model = pickle.load(open("./models/breast_cancer_model.sav",'rb'))
# sidebar navigation
with st.sidebar:
selected = option_menu('Multiple Disease Prediction System',
['Heart Disease Prediction',
'Diabetes Prediction',
'Parkinson\'s Prediction',
'Breast Cancer Prediction'],
icons=['heart','activity','person','gender-female'],
default_index=0)
# Heart Disease Prediction Page
if (selected == 'Heart Disease Prediction'):
# page title
st.title('Heart Disease Prediction using ML')
col1, col2, col3 = st.columns(3)
with col1:
age = st.text_input('Age')
with col2:
sex = st.text_input('Sex')
with col3:
cp = st.text_input('Chest Pain types')
with col1:
trestbps = st.text_input('Resting Blood Pressure')
with col2:
chol = st.text_input('Serum Cholestoral in mg/dl')
with col3:
fbs = st.text_input('Fasting Blood Sugar > 120 mg/dl')
with col1:
restecg = st.text_input('Resting Electrocardiographic results')
with col2:
thalach = st.text_input('Maximum Heart Rate achieved')
with col3:
exang = st.text_input('Exercise Induced Angina')
with col1:
oldpeak = st.text_input('ST depression induced by exercise')
with col2:
slope = st.text_input('Slope of the peak exercise ST segment')
with col3:
ca = st.text_input('Major vessels colored by flourosopy')
with col1:
thal = st.text_input('thal: 1 = normal; 2 = fixed defect; 3 = reversible defect')
# code for Prediction
heart_diagnosis = ''
# creating a button for Prediction
if st.button('Heart Disease Test Result'):
if not all([age, sex, cp, trestbps, chol, fbs, restecg,thalach,exang,oldpeak,slope,ca,thal]):
st.warning("Please fill in all the fields.")
else:
heart_prediction = heart_model.predict([[age, sex, cp, trestbps, chol, fbs, restecg,thalach,exang,oldpeak,slope,ca,thal]])
if (heart_prediction[0] == 1):
heart_diagnosis = 'The person has a heart disease'
else:
heart_diagnosis = 'The person does not have any heart disease'
st.success(heart_diagnosis)
# Diabetes Prediction Page
if (selected == 'Diabetes Prediction'):
# page title
st.title('Diabetes Prediction using ML')
# getting the input data from the user
col1, col2, col3 = st.columns(3)
with col1:
Pregnancies = st.text_input('Number of Pregnancies')
with col2:
Glucose = st.text_input('Glucose Level')
with col3:
BloodPressure = st.text_input('Blood Pressure value')
with col1:
SkinThickness = st.text_input('Skin Thickness value')
with col2:
Insulin = st.text_input('Insulin Level')
with col3:
BMI = st.text_input('BMI value')
with col1:
DiabetesPedigreeFunction = st.text_input('Diabetes Pedigree Function value')
with col2:
Age = st.text_input('Age of the Person')
# code for prediction
diab_diagnosis=''
# create a button for prediction
if st.button('Diabetes Test Result'):
if not all([Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age]):
st.warning("Please fill in all the fields.")
else:
diab_prediction = diabetes_model.predict([[Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age]])
if (diab_prediction[0] == 1):
diab_diagnosis = 'The person is diabetic'
else:
diab_diagnosis = 'The person is not diabetic'
st.success(diab_diagnosis)
# Parkinsons Prediction Page
if (selected == 'Parkinson\'s Prediction'):
# page title
st.title("Parkinson's Disease Prediction using ML")
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
fo = st.text_input('MDVP: Fo(Hz)')
with col2:
fhi = st.text_input('MDVP: Fhi(Hz)')
with col3:
flo = st.text_input('MDVP: Flo(Hz)')
with col4:
Jitter_percent = st.text_input('MDVP: Jitter(%)')
with col5:
Jitter_Abs = st.text_input('MDVP: Jitter(Abs)')
with col1:
RAP = st.text_input('MDVP: RAP')
with col2:
PPQ = st.text_input('MDVP: PPQ')
with col3:
DDP = st.text_input('Jitter: DDP')
with col4:
Shimmer = st.text_input('MDVP: Shimmer')
with col5:
Shimmer_dB = st.text_input('MDVP: Shimmer(dB)')
with col1:
APQ3 = st.text_input('Shimmer: APQ3')
with col2:
APQ5 = st.text_input('Shimmer: APQ5')
with col3:
APQ = st.text_input('MDVP: APQ')
with col4:
DDA = st.text_input('Shimmer: DDA')
with col5:
NHR = st.text_input('NHR')
with col1:
HNR = st.text_input('HNR')
with col2:
RPDE = st.text_input('RPDE')
with col3:
DFA = st.text_input('DFA')
with col4:
spread1 = st.text_input('spread1')
with col5:
spread2 = st.text_input('spread2')
with col1:
D2 = st.text_input('D2')
with col2:
PPE = st.text_input('PPE')
# code for Prediction
parkinsons_diagnosis = ''
# creating a button for Prediction
if st.button("Parkinson's Test Result"):
if not all([fo, fhi, flo, Jitter_percent, Jitter_Abs, RAP, PPQ, DDP, Shimmer, Shimmer_dB, APQ3, APQ5, APQ, DDA, NHR, HNR, RPDE, DFA, spread1, spread2, D2, PPE]):
st.warning("Please fill in all the fields.")
else:
parkinsons_prediction = parkinsons_model.predict([[fo, fhi, flo, Jitter_percent, Jitter_Abs, RAP, PPQ,DDP,Shimmer,Shimmer_dB,APQ3,APQ5,APQ,DDA,NHR,HNR,RPDE,DFA,spread1,spread2,D2,PPE]])
if (parkinsons_prediction[0] == 1):
parkinsons_diagnosis = "The person has Parkinson's disease"
else:
parkinsons_diagnosis = "The person does not have Parkinson's disease"
st.success(parkinsons_diagnosis)
# Breast Cancer Prediction Page
if selected == 'Breast Cancer Prediction':
# Page title
st.title('Breast Cancer Prediction using ML')
col1, col2, col3, col4 = st.columns(4)
with col1:
mean_radius = st.text_input('Mean Radius')
mean_smoothness = st.text_input('Mean Smoothness')
mean_symmetry = st.text_input('Mean Symmetry')
perimeter_error = st.text_input('Perimeter Error')
with col2:
mean_texture = st.text_input('Mean Texture')
mean_compactness = st.text_input('Mean Compactness')
mean_fractal_dimension = st.text_input('Mean Fractal Dimension')
area_error = st.text_input('Area Error')
with col3:
mean_perimeter = st.text_input('Mean Perimeter')
mean_concavity = st.text_input('Mean Concavity')
radius_error = st.text_input('Radius Error')
smoothness_error = st.text_input('Smoothness Error')
with col4:
mean_area = st.text_input('Mean Area')
mean_concave_points = st.text_input('Mean Concave Points')
texture_error = st.text_input('Texture Error')
compactness_error = st.text_input('Compactness Error')
with col1:
concavity_error = st.text_input('Concavity Error')
worst_radius = st.text_input('Worst Radius')
worst_smoothness = st.text_input('Worst Smoothness')
worst_symmetry = st.text_input('Worst Symmetry')
with col2:
concave_points_error = st.text_input('Concave Points Error')
worst_texture = st.text_input('Worst Texture')
worst_compactness = st.text_input('Worst Compactness')
worst_fractal_dimension = st.text_input('Worst Fractal Dimension')
with col3:
symmetry_error = st.text_input('Symmetry Error')
worst_perimeter = st.text_input('Worst Perimeter')
worst_concavity = st.text_input('Worst Concavity')
with col4:
fractal_dimension_error = st.text_input('Fractal Dimension Error')
worst_area = st.text_input('Worst Area')
worst_concave_points = st.text_input('Worst Concave Points')
# Code for prediction
cancer_diagnosis = ''
# Creating a button for prediction
if st.button('Breast Cancer Test Result'):
if not all([mean_radius, mean_texture, mean_perimeter, mean_area, mean_smoothness, mean_compactness,
mean_concavity, mean_concave_points, mean_symmetry, mean_fractal_dimension, radius_error,
texture_error, perimeter_error, area_error, smoothness_error, compactness_error, concavity_error,
concave_points_error, symmetry_error, fractal_dimension_error, worst_radius, worst_texture,
worst_perimeter, worst_area, worst_smoothness, worst_compactness, worst_concavity,
worst_concave_points, worst_symmetry, worst_fractal_dimension]):
st.warning("Please fill in all the fields.")
else:
cancer_prediction = breast_model.predict([[mean_radius, mean_texture, mean_perimeter, mean_area,
mean_smoothness, mean_compactness, mean_concavity,
mean_concave_points, mean_symmetry, mean_fractal_dimension,
radius_error, texture_error, perimeter_error, area_error,
smoothness_error, compactness_error, concavity_error,
concave_points_error, symmetry_error, fractal_dimension_error,
worst_radius, worst_texture, worst_perimeter, worst_area,
worst_smoothness, worst_compactness, worst_concavity,
worst_concave_points, worst_symmetry, worst_fractal_dimension]])
if cancer_prediction[0] == 1:
cancer_diagnosis = 'The person is diagnosed with breast cancer.'
else:
cancer_diagnosis = 'The person is not diagnosed with breast cancer.'
st.success(cancer_diagnosis)