-
Notifications
You must be signed in to change notification settings - Fork 259
Description
If I use point as input prompt words, the result is worse than the original version SAM2 from Meta AI reseach. I want to know if SAM-HQ only supports using boxes as prompt words. The left picture is the output of SAM-HQ, and the right picture is the output of SAM2. I also attached the modified code that uses point as prompt words and the orignal picture for test.


Code is here:
import numpy as np
import torch
import matplotlib.pyplot as plt
import cv2
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
import os
def show_mask(mask, ax, random_color=False, borders = True):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask = mask.astype(np.uint8)
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
if borders:
import cv2
contours, _ = cv2.findContours(mask,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# Try to smooth contours
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=False):
for i, (mask, score) in enumerate(zip(masks, scores)):
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(mask, plt.gca(), borders=borders)
if point_coords is not None:
assert input_labels is not None
show_points(point_coords, input_labels, plt.gca())
if box_coords is not None:
# boxes
show_box(box_coords, plt.gca())
if len(scores) > 1:
plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
plt.axis('off')
plt.show()
def show_res(masks, scores, input_point, input_label, input_box, filename, image):
for i, (mask, score) in enumerate(zip(masks, scores)):
plt.figure(figsize=(10,10))
plt.imshow(image)
show_mask(mask, plt.gca())
if input_box is not None:
box = input_box[i]
show_box(box, plt.gca())
if (input_point is not None) and (input_label is not None):
show_points(input_point, input_label, plt.gca())
print(f"Score: {score:.3f}")
plt.axis('off')
plt.savefig(filename+'_'+str(i)+'.png',bbox_inches='tight',pad_inches=-0.1)
plt.close()
def show_res_multi(masks, scores, input_point, input_label, input_box, filename, image):
plt.figure(figsize=(10, 10))
plt.imshow(image)
for mask in masks:
show_mask(mask, plt.gca(), random_color=True)
for box in input_box:
show_box(box, plt.gca())
for score in scores:
print(f"Score: {score:.3f}")
plt.axis('off')
plt.savefig(filename +'.png',bbox_inches='tight',pad_inches=-0.1)
plt.close()
if name == "main":
checkpoint = "D:/huggingface_cache/sam2.1_hq_hiera_large.pt"
model_cfg = "configs/sam2.1/sam2.1_hq_hiera_l.yaml"
predictor = SAM2ImagePredictor(build_sam2(model_cfg, checkpoint))
for i in range(1,3):
print("image: ",i)
# hq_token_only: False means use hq output to correct SAM output.
# True means use hq output only.
# Default: False
hq_token_only = False
# To achieve best visualization effect, for images contain multiple objects (like typical coco images), we suggest to set hq_token_only=False
# For images contain single object, we suggest to set hq_token_only = True
# For quantiative evaluation on COCO/YTVOS/DAVIS/UVO/LVIS etc., we set hq_token_only = False
image = cv2.imread('E:/AI/sam-hq-main/sam-hq2/demo/input_images/test'+str(i)+'.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image)
if i==1:
input_box = None
input_point = np.array([[400, 550]])
input_label = np.ones(input_point.shape[0])
elif i==2:
input_box = None
input_point = np.array([[300, 350]])
input_label = np.ones(input_point.shape[0])
elif i==3:
input_box = None
input_point = np.array([[400, 390]])
input_label = np.ones(input_point.shape[0])
batch_box = False if input_box is None else len(input_box)>1
result_path = 'demo/hq_sam_result_vis/'
os.makedirs(result_path, exist_ok=True)
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
masks, scores, logits = predictor.predict(point_coords=input_point,
point_labels=input_label,
box=input_box,
multimask_output=True, hq_token_only=hq_token_only)
if not batch_box:
show_res(masks,scores,input_point, input_label, input_box, result_path + 'example'+str(i), image)
else:
masks = masks.squeeze(1)
scores = scores.squeeze(1)
input_box = input_box.cpu().numpy()
show_res_multi(masks, scores, input_point, input_label, input_box, result_path + 'example'+str(i), image)