Skip to content

Commit dc61b6e

Browse files
authored
[Doc] Prepare v0.5.2 release (#322)
1 parent 215ca27 commit dc61b6e

File tree

4 files changed

+13
-9
lines changed

4 files changed

+13
-9
lines changed

README.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -20,20 +20,22 @@ We summarize the contributions of CogDL as follows:
2020

2121
## ❗ News
2222

23+
- The new **v0.5.2 release** adds a GNN example for ogbn-products and updates geom datasets. It also fixes some potential bugs including setting devices, using cpu for inference, etc.
24+
2325
- The new **v0.5.1 release** adds fast operators including SpMM (cpu version) and scatter_max (cuda version). It also adds lots of datasets for node classification which can be found in [this link](./cogdl/datasets/rd2cd_data.py). 🎉
2426

2527
- The new **v0.5.0 release** designs and implements a unified training loop for GNN. It introduces `DataWrapper` to help prepare the training/validation/test data and `ModelWrapper` to define the training/validation/test steps. 🎉
2628

2729
- The new **v0.4.1 release** adds the implementation of Deep GNNs and the recommendation task. It also supports new pipelines for generating embeddings and recommendation. Welcome to join our tutorial on KDD 2021 at 10:30 am - 12:00 am, Aug. 14th (Singapore Time). More details can be found in https://kdd2021graph.github.io/. 🎉
2830

29-
- The new **v0.4.0 release** refactors the data storage (from `Data` to `Graph`) and provides more fast operators to speed up GNN training. It also includes many self-supervised learning methods on graphs. BTW, we are glad to announce that we will give a tutorial on KDD 2021 in August. Please see [this link](https://kdd2021graph.github.io/) for more details. 🎉
30-
3131
<details>
3232
<summary>
3333
News History
3434
</summary>
3535
<br/>
3636

37+
- The new **v0.4.0 release** refactors the data storage (from `Data` to `Graph`) and provides more fast operators to speed up GNN training. It also includes many self-supervised learning methods on graphs. BTW, we are glad to announce that we will give a tutorial on KDD 2021 in August. Please see [this link](https://kdd2021graph.github.io/) for more details. 🎉
38+
3739
- CogDL supports GNN models with Mixture of Experts (MoE). You can install [FastMoE](https://github.com/laekov/fastmoe) and try **[MoE GCN](./cogdl/models/nn/moe_gcn.py)** in CogDL now!
3840

3941
- The new **v0.3.0 release** provides a fast spmm operator to speed up GNN training. We also release the first version of **[CogDL paper](https://arxiv.org/abs/2103.00959)** in arXiv. You can join [our slack](https://join.slack.com/t/cogdl/shared_invite/zt-b9b4a49j-2aMB035qZKxvjV4vqf0hEg) for discussion. 🎉🎉🎉

README_CN.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -20,20 +20,22 @@ CogDL的特性包括:
2020

2121
## ❗ 最新
2222

23+
- 最新的 **v0.5.2 release** 给ogbn-products数据集添加了GNN样例,更新了geom数据集。这个版本同时修复了一些潜在的问题,包括设置不同device,使用cpu进行预测等。
24+
2325
- 最新的 **v0.5.1 release** 添加了一些高效的算子,包括cpu版本的SpMM和cuda版本的scatter_max。这个版本同时增加了很多用于节点分类的[数据集](./cogdl/datasets/rd2cd_data.py)。 🎉
2426

2527
- 最新的 **v0.5.0 release** 为图神经网络的训练设计了一套统一的流程. 这个版本去除了原先的`Task`类,引入了`DataWrapper`来准备training/validation/test过程中所需的数据,引入了`ModelWrapper`来定义模型training/validation/test的步骤. 🎉
2628

2729
- 最新的 **v0.4.1 release** 增加了深层GNN的实现和推荐任务。这个版本同时提供了新的一些pipeline用于直接获取图表示和搭建推荐应用。欢迎大家参加我们在KDD 2021上的tutorial,时间是8月14号上午10:30 - 12:00(北京时间)。 更多的内容可以查看 https://kdd2021graph.github.io/. 🎉
2830

29-
- 最新的 **v0.4.0版本** 重构了底层的数据存储(从`Data`类变为`Graph`类),并且提供了更多快速的算子来加速图神经网络的训练。这个版本还包含了很多图自监督学习的算法。同时,我们很高兴地宣布我们将在8月份的KDD 2021会议上给一个CogDL相关的tutorial。具体信息请参见[这个链接](https://kdd2021graph.github.io/). 🎉
30-
3131
<details>
3232
<summary>
3333
历史
3434
</summary>
3535
<br/>
3636

37+
- 最新的 **v0.4.0版本** 重构了底层的数据存储(从`Data`类变为`Graph`类),并且提供了更多快速的算子来加速图神经网络的训练。这个版本还包含了很多图自监督学习的算法。同时,我们很高兴地宣布我们将在8月份的KDD 2021会议上给一个CogDL相关的tutorial。具体信息请参见[这个链接](https://kdd2021graph.github.io/). 🎉
38+
3739
- CogDL支持图神经网络模型使用混合专家模块(Mixture of Experts, MoE)。 你可以安装[FastMoE](https://github.com/laekov/fastmoe)然后在CogDL中尝试 **[MoE GCN](./cogdl/models/nn/moe_gcn.py)** 模型!
3840

3941
- 最新的 **v0.3.0版本** 提供了快速的稀疏矩阵乘操作来加速图神经网络模型的训练。我们在arXiv上发布了 **[CogDL paper](https://arxiv.org/abs/2103.00959)** 的初版. 你可以加入[我们的slack](https://join.slack.com/t/cogdl/shared_invite/zt-b9b4a49j-2aMB035qZKxvjV4vqf0hEg)来讨论CogDL相关的内容。🎉

cogdl/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
__version__ = "0.5.1.post1"
1+
__version__ = "0.5.2"
22

33
from .experiments import experiment
44
from .pipelines import pipeline

docs/source/index.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -9,14 +9,14 @@ CogDL is a graph representation learning toolkit that allows researchers and dev
99

1010
We summarize the contributions of CogDL as follows:
1111

12-
- **High Efficiency**: CogDL utilizes well-optimized operators to speed up training and save GPU memory of GNN models.
13-
- **Easy-to-Use**: CogDL provides easy-to-use APIs for running experiments with the given models and datasets using hyper-parameter search.
12+
- **Efficiency**: CogDL utilizes well-optimized operators to speed up training and save GPU memory of GNN models.
13+
- **Ease of Use**: CogDL provides easy-to-use APIs for running experiments with the given models and datasets using hyper-parameter search.
1414
- **Extensibility**: The design of CogDL makes it easy to apply GNN models to new scenarios based on our framework.
15-
- **Reproducibility**: CogDL provides reproducible leaderboards for state-of-the-art models on most of important tasks in the graph domain.
1615

1716
❗ News
1817
------------
1918

19+
- The new **v0.5.2 release** adds a GNN example for ogbn-products and updates geom datasets. It also fixes some potential bugs including setting devices, using cpu for inference, etc.
2020
- The new **v0.5.1 release** adds fast operators including SpMM (cpu version) and scatter_max (cuda version). It also adds lots of datasets for node classification. 🎉
2121
- The new **v0.5.0 release** designs and implements a unified training loop for GNN. It introduces `DataWrapper` to help prepare the training/validation/test data and `ModelWrapper` to define the training/validation/test steps.
2222
- The new **v0.4.1 release** adds the implementation of Deep GNNs and the recommendation task. It also supports new pipelines for generating embeddings and recommendation. Welcome to join our tutorial on KDD 2021 at 10:30 am - 12:00 am, Aug. 14th (Singapore Time). More details can be found in https://kdd2021graph.github.io/. 🎉
@@ -34,7 +34,7 @@ Please cite `our paper <https://arxiv.org/abs/2103.00959>`_ if you find our code
3434
::
3535

3636
@article{cen2021cogdl,
37-
title={CogDL: An Extensive Toolkit for Deep Learning on Graphs},
37+
title={CogDL: Toolkit for Deep Learning on Graphs},
3838
author={Yukuo Cen and Zhenyu Hou and Yan Wang and Qibin Chen and Yizhen Luo and Xingcheng Yao and Aohan Zeng and Shiguang Guo and Peng Zhang and Guohao Dai and Yu Wang and Chang Zhou and Hongxia Yang and Jie Tang},
3939
journal={arXiv preprint arXiv:2103.00959},
4040
year={2021}

0 commit comments

Comments
 (0)