-
Notifications
You must be signed in to change notification settings - Fork 61
/
generate.py
136 lines (112 loc) · 4.23 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import tensorflow as tf
import sys
import pickle
from generate_base import Generator
from model import PoemModel
from model import HParams
from state import FLAGS
from PoetryTool import PoetryTool
import numpy as np
global g1
g1 = tf.Graph()
class GeneratorUI(object):
def __init__(self):
self.FLAGS = FLAGS
print(self.FLAGS.data_dir)
self.vocab, self.ivocab = self.load_dic(
self.FLAGS.data_dir)
self.dic_size = len(self.vocab)
self.hps = HParams(
vocab_size=len(self.vocab),
emb_size=self.FLAGS.emb_size,
hidden_size=self.FLAGS.hidden_size,
device=self.FLAGS.device,
learning_rate=self.FLAGS.learning_rate,
max_gradient_norm=self.FLAGS.max_gradient_norm,
buckets=[(8, 9)],
batch_size=self.FLAGS.batch_size,
num_topic = self.FLAGS.num_topic,
mode='decode'
)
self.tool = PoetryTool()
self.load_already=False
def load_dic(self, file_dir):
"""
loading training data, including vocab, inverting vocab and corpus
"""
vocab_file = open(file_dir + '/vocab.pkl', 'rb')
dic = pickle.load(vocab_file,encoding='utf8')
vocab_file.close()
ivocab_file = open(file_dir + '/ivocab.pkl', 'rb')
idic = pickle.load(ivocab_file,encoding='utf8')
ivocab_file.close()
return dic, idic
def load_model(self, session, beam_size):
"""load parameters in session."""
decode_hps = self.hps._replace(batch_size=beam_size)
model = PoemModel(decode_hps)
ckpt = tf.train.get_checkpoint_state("model/")
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" %
ckpt.model_checkpoint_path)
model.saver.restore(session, ckpt.model_checkpoint_path)
else:
raise ValueError("%s not found! " % ckpt.model_checkpoint_path)
return model
def generate_one(self, all_topic):
# generate poems using cmd line
beam_size = input("please input beam size>")
beam_size = int(beam_size)
self.sess = tf.InteractiveSession(graph=tf.Graph())
self.model = self.load_model(self.sess, beam_size)
self.generator = Generator(
self.vocab, self.ivocab, self.hps, self.model, self.sess)
while True:
sys.stdout.write("> ")
sys.stdout.flush()
sentence = sys.stdin.readline()
ans, info = self.generator.generate_one(sentence, beam_size=beam_size, all_topic=all_topic, manu=False)
if len(ans) == 0:
print("generation failed!")
print(info)
continue
for sen in ans:
print(sen)
def generate_whole_file(self, infile, outfile, all_topic, beam_size):
# generate poems given the first sentences from a file
self.sess = tf.InteractiveSession(graph=g1)
self.model = self.load_model(self.sess, beam_size)
self.generator = Generator(
self.vocab, self.ivocab, self.hps, self.model, self.sess)
fin = open(infile, 'r')
lines = fin.readlines()
fin.close()
for manu in range(10):
fout = open(outfile+str(manu)+".txt", 'w')
for line in lines:
line = line.strip()
if len(line)<5:
continue
if line == "failed!":
continue
#try:
ans, info = self.generator.generate_one(line, manu, beam_size, all_topic, False)
if len(ans) == 0:
fout.write(info + "\n")
else:
fout.write(" ".join(ans) + "\n")
fout.flush()
#except:
# print(line)
fout.close()
def main(_):
ui = GeneratorUI()
#ui.generate_whole_file("input_firstlines.txt", "gen_poems.txt", True, 20)
ui.generate_one(False)
if __name__ == "__main__":
tf.app.run()