forked from ghurault/EczemaTreat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04b_run_validation_reference.R
157 lines (121 loc) · 4.6 KB
/
04b_run_validation_reference.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Notes -------------------------------------------------------------------
# Run validation for univariate reference models (uniform, historical forecast)
# Initialisation ----------------------------------------------------------
rm(list = ls()) # Clear Workspace (better to restart the session)
set.seed(2021) # Reproducibility (Stan use a different seed)
source(here::here("analysis", "00_init.R"))
library(foreach)
library(doParallel)
dataset <- "PFDC"
#### OPTIONS
score <- "SCORAD"
mdl_name <- "historical"
run <- FALSE
t_horizon <- 4
n_chains <- 4
n_it <- 2000
n_cluster <- 2 # floor((parallel::detectCores() - 2) / n_chains)
####
item_dict <- detail_POSCORAD()
score <- match.arg(score, item_dict[["Name"]])
mdl_name <- match.arg(mdl_name, c("uniform", "historical"))
item_dict <- item_dict %>% filter(Name == score)
item_lbl <- as.character(item_dict[["Label"]])
max_score <- item_dict[["Maximum"]]
reso <- item_dict[["Resolution"]]
M <- round(max_score / reso)
is_continuous <- (score %in% c("SCORAD", "oSCORAD"))
## Files
file_dict <- get_results_files(outcome = score,
model = mdl_name,
dataset = dataset,
val_horizon = t_horizon,
root_dir = here())
# Data ---------------------------------------------------------------------
POSCORAD <- load_PFDC()$POSCORAD
# Subset dataset
df <- POSCORAD %>%
rename(Time = Day, Score = all_of(item_lbl)) %>%
select(Patient, Time, Score) %>%
drop_na()
pt <- unique(df[["Patient"]])
# Forward chaining --------------------------------------------------------
df <- df %>% mutate(Iteration = get_fc_iteration(Time, t_horizon))
train_it <- get_fc_training_iteration(df[["Iteration"]])
if (run) {
cl <- makeCluster(n_cluster, outfile = "")
registerDoParallel(cl)
dir.create(file_dict$ValDir)
out <- foreach(i = rev(seq_along(train_it))) %dopar% {
it <- train_it[i]
# Need to reload functions and libraries
source(here::here("analysis", "00_init.R"))
duration <- Sys.time()
cat(glue::glue("Starting iteration {it}"), sep = "\n")
####
split <- split_fc_dataset(df, it)
train <- split$Training
test <- split$Testing
# Uniform forecast
if (mdl_name == "uniform" && !is_continuous) {
perf <- test %>%
mutate(Score = round(Score / reso)) %>%
add_uniform_pred(test = .,
max_score = M,
discrete = TRUE,
include_samples = FALSE) %>%
mutate(Score = Score * reso)
}
if (mdl_name == "uniform" && is_continuous) {
perf <- test %>%
add_uniform_pred(test = .,
max_score = max_score,
discrete = FALSE,
include_samples = TRUE,
n_samples = 2 * max_score)
}
# Historical forecast
if (mdl_name == "historical" && !is_continuous) {
perf <- test %>%
mutate(Score = round(Score / reso)) %>%
add_historical_pred(test = .,
train = mutate(train, Score = round(Score / reso)),
max_score = M,
discrete = TRUE,
add_uniform = TRUE,
include_samples = FALSE) %>%
mutate(Score = Score * reso)
}
if (mdl_name == "historical" && is_continuous) {
perf <- test %>%
add_historical_pred(test = .,
train = train,
max_score = max_score,
discrete = FALSE,
add_uniform = TRUE,
include_samples = TRUE)
}
perf <- perf %>%
select(-LastTime, -LastScore)
# Save results (better to save in the loop in case something breaks)
saveRDS(perf, file = here(file_dict$ValDir, paste0("val_", it, ".rds")))
####
duration <- Sys.time() - duration
cat(glue::glue("Ending iteration {it} after {round(duration, 1)} {units(duration)}"), sep = "\n")
# Return
NULL
}
stopCluster(cl)
# Recombine results
files <- list.files(file_dict$ValDir, full.names = TRUE)
if (length(files) < length(train_it)) {
warning(glue::glue("Number of files (={length(files)}) less than the number of unique iterations (={length(train_it)}).
Some runs may have failed."))
}
res <- lapply(files,
function(f) {
readRDS(f)
}) %>%
bind_rows()
saveRDS(res, file = file_dict$Val)
}