|
| 1 | +from dataclasses import ( |
| 2 | + asdict, |
| 3 | + dataclass, |
| 4 | +) |
| 5 | +from datetime import ( |
| 6 | + datetime, |
| 7 | + timedelta, |
| 8 | +) |
| 9 | +import os |
| 10 | +import random |
| 11 | +from typing import List |
| 12 | + |
| 13 | +from matplotlib import pyplot as plt |
| 14 | +import pandas as pd |
| 15 | + |
| 16 | + |
| 17 | +NUM_USERS = 4 |
| 18 | + |
| 19 | +WEBSITES = ["Cat Pictures", "Stack Overflow", "PyData", "Reddit"] |
| 20 | +NUM_WEBSITES = len(WEBSITES) |
| 21 | + |
| 22 | +COLOURS = [ |
| 23 | + "#f98c2a", # Orange |
| 24 | + "#5ddbc2", # Teal |
| 25 | + "#5c5aa6", # Dark purple |
| 26 | + "#d8d7d6", # Darker grey |
| 27 | + "#8c8bc0", # Light purple |
| 28 | + "#e2e2e3", # Grey |
| 29 | +] |
| 30 | + |
| 31 | +random.seed("PyData!") |
| 32 | + |
| 33 | + |
| 34 | +@dataclass |
| 35 | +class Event: |
| 36 | + user_id: int |
| 37 | + website_id: int |
| 38 | + event_datetime: datetime |
| 39 | + |
| 40 | + |
| 41 | +Events = List[Event] |
| 42 | + |
| 43 | + |
| 44 | +def random_dates(start: datetime, l: int) -> List[datetime]: |
| 45 | + current = start |
| 46 | + for _ in range(l): |
| 47 | + # Add a gap of up to 5 minutes |
| 48 | + extra_minutes = random.randint(0, 5) |
| 49 | + |
| 50 | + # 1/10 times add a bigger gap of up to an hour |
| 51 | + if random.random() < 0.1: |
| 52 | + extra_minutes += random.randint(10, 60) |
| 53 | + |
| 54 | + current += timedelta(minutes=extra_minutes) |
| 55 | + current += timedelta(seconds=random.randint(0, 59)) |
| 56 | + |
| 57 | + yield current |
| 58 | + |
| 59 | + |
| 60 | +def random_events() -> pd.DataFrame: |
| 61 | + events: Events = [] |
| 62 | + |
| 63 | + for cust_id in range(NUM_USERS): |
| 64 | + num_rows = random.randint(20, 40) |
| 65 | + website_ids = list(range(NUM_WEBSITES)) |
| 66 | + for dt in random_dates(datetime(2022, 10, 1, 8), num_rows): |
| 67 | + event = Event( |
| 68 | + user_id=cust_id, |
| 69 | + website_id=random.choices( |
| 70 | + population=website_ids, weights=website_ids.reverse() |
| 71 | + )[0], |
| 72 | + event_datetime=dt, |
| 73 | + ) |
| 74 | + events.append(event) |
| 75 | + |
| 76 | + return pd.DataFrame.from_records([asdict(e) for e in events]) |
| 77 | + |
| 78 | + |
| 79 | +def plot_events(events_df: pd.DataFrame): |
| 80 | + # Different colours for each website |
| 81 | + # create an axis with the first website, then append to that axis afterwards |
| 82 | + cust_df = events_df[events_df["website_id"] == 0] |
| 83 | + axis = cust_df.plot( |
| 84 | + x="event_datetime", |
| 85 | + y="user_id", |
| 86 | + kind="scatter", |
| 87 | + c=COLOURS[0], |
| 88 | + label=WEBSITES[0], |
| 89 | + ) |
| 90 | + |
| 91 | + for website_id in range(1, NUM_WEBSITES): |
| 92 | + cust_df = events_df[events_df["website_id"] == website_id] |
| 93 | + cust_df.plot( |
| 94 | + x="event_datetime", |
| 95 | + y="user_id", |
| 96 | + kind="scatter", |
| 97 | + ax=axis, |
| 98 | + c=COLOURS[website_id], |
| 99 | + label=WEBSITES[website_id], |
| 100 | + ) |
| 101 | + |
| 102 | + min_date = ( |
| 103 | + events_df["event_datetime"].min().replace(microsecond=0, second=0, minute=0) |
| 104 | + ) |
| 105 | + max_date = events_df["event_datetime"].max().replace( |
| 106 | + microsecond=0, second=0, minute=0 |
| 107 | + ) + timedelta(hours=1) |
| 108 | + |
| 109 | + date_to_add = min_date |
| 110 | + dates = [date_to_add] |
| 111 | + while date_to_add <= max_date: |
| 112 | + date_to_add += timedelta(hours=2) |
| 113 | + dates.append(date_to_add) |
| 114 | + |
| 115 | + plt.yticks(range(NUM_USERS)) |
| 116 | + plt.xticks(dates) |
| 117 | + |
| 118 | + plt.ylabel("user ID", fontsize=8) |
| 119 | + plt.xlabel("Time", fontsize=8) |
| 120 | + |
| 121 | + plt.tick_params(axis="x", which="major", labelsize=8) |
| 122 | + plt.tick_params(axis="y", which="major", labelsize=8) |
| 123 | + |
| 124 | + plt.show() |
| 125 | + |
| 126 | + |
| 127 | +if __name__ == "__main__": |
| 128 | + events = random_events() |
| 129 | + |
| 130 | + base_dir = os.path.dirname(os.path.dirname(__file__)) |
| 131 | + filename = f"website_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv" |
| 132 | + events.to_csv( |
| 133 | + os.path.join(base_dir, "data", filename), |
| 134 | + index=False, |
| 135 | + date_format="%Y-%m-%dT%H:%M:%S", |
| 136 | + ) |
| 137 | + |
| 138 | + plot_events(events) |
0 commit comments