-
Notifications
You must be signed in to change notification settings - Fork 161
/
excess_deaths_script.R
470 lines (384 loc) · 20.7 KB
/
excess_deaths_script.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# Step 1: import libraries and data ---------------------------------------
# Import libraries
library(tidyverse)
library(readxl)
library(data.table)
library(lubridate)
options(scipen=999)
# Import data
historical_deaths <- dir('output-data/historical-deaths')
# Updated list of countries with data:
countries <- c("Albania", "Andorra", "Antigua and Barbuda",
"Argentina", "Armenia", "Aruba",
"Azerbaijan", "Belarus", "Belize",
"Bermuda", "Bolivia", "Bosnia and Herzegovina",
"Brazil", "Costa Rica", "Cuba",
"Egypt", "El Salvador", "Faroe Islands",
"French Polynesia", "Georgia", "Gibraltar",
"Greenland", "Hong Kong", "Indonesia",
"Ireland", "Jamaica", "Japan",
"Kazakhstan", "Kosovo", "Kyrgyzstan",
"Lebanon", "Liechtenstein", "Macao",
"Malaysia", "Mauritius", "Moldova",
"Monaco", "Mongolia", "Nicaragua",
"North Macedonia", "Oman", "Panama",
"Paraguay", "Philippines", "Qatar",
"Russia", "San Marino", "Serbia",
"Seychelles", "Singapore", "Taiwan",
"Thailand", "Ukraine", "Uruguay",
"Uzbekistan", "Australia", "Austria", "Belgium", "Britain",
"Bulgaria",
"Canada", "Chile", "Colombia", "Croatia", "Cyprus",
"Czech Republic", "Denmark", "Ecuador", "Estonia", "Finland",
"France", "Germany", "Greece", "Guatemala", "Hungary",
"Iceland", "Iran", "Israel", "Italy", "Latvia",
"Lithuania", "Luxembourg", "Malta", "Mexico", "Montenegro",
"Netherlands", "New Zealand", "Norway", "Peru", "Poland",
"Portugal", "Romania", "Slovakia", "Slovenia", "South Africa",
"South Korea", "Spain", "Sweden", "Switzerland", "Tunisia",
"Turkey", "United States", "Tajikistan", "Dominican Republic", "Kuwait", "Brunei", "Barbados", "Jordan", "Maldives", "Palestine",
"Algeria", "Saint Kitts and Nevis", 'Suriname', 'Cape Verde', 'Saint Vincent and the Grenadines', 'Bahamas', 'Isle of Man', 'United Arab Emirates', 'Bhutan', 'Namibia')
# Step 2: define function that calculates excess deaths ---------------------------------------
# Define function that calculates excess deaths
get_excess_deaths <- function(df,expected_deaths_model,frequency="weekly",calculate=TRUE,train_model=TRUE){
# Define formulas and count number of regions
weekly_formula <- as.formula(total_deaths_per_day ~ year + week)
weekly_regional_formula <- as.formula(total_deaths_per_day ~ year + week + region + region:year + region:week)
monthly_formula <- as.formula(total_deaths_per_day ~ year + month)
monthly_regional_formula <- as.formula(total_deaths_per_day ~ year + month + region + region:year + region:month)
quarterly_formula <- as.formula(total_deaths_per_day ~ year + quarter)
quarterly_regional_formula <- as.formula(total_deaths_per_day ~ year + quarter + region + region:year + region:quarter)
df_regions <- length(unique(df$region))
# Convert weeks and months into fixed effects
if(frequency == "weekly") {
df <- df %>% mutate(week = as.character(week))
} else if (frequency == "monthly") {
df <- df %>% mutate(month = as.character(month))
} else if (frequency == "quarterly") {
df <- df %>% mutate(quarter = as.character(quarter))
}
# Identify the correct formula for the dataframe
if(frequency == "weekly" & df_regions == 1) {
expected_deaths_formula <- weekly_formula
} else if (frequency == "weekly" & df_regions > 1) {
expected_deaths_formula <- weekly_regional_formula
} else if (frequency == "monthly" & df_regions == 1) {
expected_deaths_formula <- monthly_formula
} else if (frequency == "monthly" & df_regions > 1) {
expected_deaths_formula <- monthly_regional_formula
} else if (frequency == "quarterly" & df_regions == 1) {
expected_deaths_formula <- quarterly_formula
} else if (frequency == "quarterly" & df_regions > 1) {
expected_deaths_formula <- quarterly_regional_formula
}
# Calculate expected deaths
if(calculate == FALSE) {
# Use pre-existing official model
expected_deaths <- df %>% filter(year >= 2020)
} else if(train_model == FALSE) {
# Use previously trained Economist model
expected_deaths <- df %>% filter(year >= 2020) %>%
mutate(expected_deaths = predict(expected_deaths_model,.) * days)
} else if(frequency == "weekly") {
# Create dataframe of week 53, using week 52 and 53 in previous years
week_53_df <- df %>%
filter(week %in% c("52","53")) %>% mutate(week = "53", week_53 = 1)
# Train an Economist weekly model
train_df <- df %>%
filter(week != "53") %>%
bind_rows(week_53_df) %>%
filter(end_date < as.Date("2020-03-01")) %>%
mutate(total_deaths_per_day = total_deaths / days)
expected_deaths_model <- lm(expected_deaths_formula,train_df)
expected_deaths <- df %>% filter(year >= 2020) %>%
mutate(expected_deaths = predict(expected_deaths_model,newdata=.) * days)
} else if(frequency %in% c("monthly","quarterly")) {
# Train an Economist monthly or quarterly model
train_df <- df %>%
filter(end_date < as.Date("2020-03-01")) %>%
mutate(total_deaths_per_day = total_deaths / days)
expected_deaths_model <- lm(expected_deaths_formula,train_df)
expected_deaths <- df %>% filter(year >= 2020) %>%
mutate(expected_deaths = predict(expected_deaths_model,newdata=.) * days)
}
# Set expected deaths to be non-negative (on implementation, this had no impact, but makes code more robust to the off chance that some country had extremely strong time effects and extremely strong downward trend in deaths over time):
expected_deaths$expected_deaths[expected_deaths$expected_deaths < 0] <- 0
# Calculate excess deaths
excess_deaths <- expected_deaths %>%
mutate(excess_deaths = total_deaths - expected_deaths,
non_covid_deaths = total_deaths - covid_deaths,
region_code = as.character(region_code)) %>%
mutate(covid_deaths_per_100k = covid_deaths / population * 100000,
excess_deaths_per_100k = excess_deaths / population * 100000,
excess_deaths_pct_change = ((expected_deaths + excess_deaths) / expected_deaths) - 1)
# Calculate weekly rates for monthly and quarterly data
if(frequency %in% c("monthly","quarterly")) {
excess_deaths <- excess_deaths %>%
mutate(total_deaths_per_7_days = total_deaths / days * 7,
covid_deaths_per_7_days = covid_deaths / days * 7,
expected_deaths_per_7_days = expected_deaths / days * 7,
excess_deaths_per_7_days = excess_deaths / days * 7,
non_covid_deaths_per_7_days = non_covid_deaths / days * 7,
covid_deaths_per_100k_per_7_days = covid_deaths_per_100k / days * 7,
excess_deaths_per_100k_per_7_days = excess_deaths_per_100k / days * 7)
}
list(expected_deaths_model,excess_deaths)
}
# Step 3: calculate excess deaths for each country ---------------------------------------
frequencies_used <- c() # Records which frequencies we use in the data
# Cycle through countries
for(i in historical_deaths){
# Load data
dat <- fread(paste0('output-data/historical-deaths/', i))
# Get data frequency
dat_frequency <- paste0(colnames(dat)[8], "ly")
frequencies_used <- c(frequencies_used, dat_frequency)
# Get country
country <- dat$country[1]
# Check that country in list of countries with data not from new country - if so, insert break:
if(!country %in% countries){
stop(paste0(country, " is a new country, please inspect manually to ensure consistency."))
}
# If loading regional data, then do not use national estimate as well
regional <- FALSE # Set default
if(any(dat$country != dat$region) > 0){
regional <- TRUE
dat <- dat[dat$country != dat$region, ]
}
# Get excess deaths, training a new model (except for South Africa, where expected deaths are provided explicitly):
res <- get_excess_deaths(dat,
expected_deaths_model = NULL,
frequency = dat_frequency)
# Move spaces to "_" make lower case for file names:
country <- tolower(unlist(gsub(" ", "_", country)))
# Save the model
saveRDS(res[[1]], paste0("output-data/expected-deaths-models/",
country, ifelse(regional, '_by_region', ''), "_expected_deaths_model.RDS"))
# Save the results
write.csv(res[[2]],
paste0("output-data/excess-deaths/", country, ifelse(regional, '_by_region', ''), "_excess_deaths.csv"),
fileEncoding = "UTF-8", row.names=FALSE)
}
# We finally combine the US estimates into one file for convenience and consistency with past output
# Load files:
US_national <- read_csv("output-data/excess-deaths/united_states_excess_deaths.csv")
US_regional <- read_csv("output-data/excess-deaths/united_states_by_region_excess_deaths.csv")
US <- rbind(US_national, US_regional)
# Write common export:
write.csv(US,
"output-data/excess-deaths/united_states_excess_deaths.csv",
fileEncoding = "UTF-8", row.names=FALSE)
# Remove export now part of main file:
unlink("output-data/excess-deaths/united_states_by_region_excess_deaths.csv")
# Step 4: combine weekly, monthly and quarterly deaths together, and calculate deaths per 100,000 people and percentage change ---------------------------------------
# Combine weekly deaths and calculate per 100,000 people and percentage change
data <- lapply(setdiff(dir('output-data/excess-deaths/'),
c("all_monthly_excess_deaths.csv",
"all_quarterly_excess_deaths.csv",
"all_weekly_excess_deaths.csv")),
FUN = function(i){
temp <- read_csv(paste0('output-data/excess-deaths/', i))
temp$region_code <- as.character(temp$region_code)
temp})
# Save weekly data
if("weekly" %in% frequencies_used){
all_weekly_excess_deaths <- rbindlist(data[unlist(lapply(1:length(data), FUN = function(i){
colnames(data[[i]])[8] == "week"
}))]) %>%
mutate(covid_deaths_per_100k = covid_deaths / population * 100000,
excess_deaths_per_100k = excess_deaths / population * 100000,
excess_deaths_pct_change = (total_deaths / expected_deaths) - 1)
# Deduplication
if(max(table(with(all_weekly_excess_deaths, paste0(country, "_", region, "_", year, "_", week)))) != 1){stop("Duplications in weekly data, please inspect")}
}
# Save monthly data
if("monthly" %in% frequencies_used){
all_monthly_excess_deaths <- rbindlist(data[unlist(lapply(1:length(data), FUN = function(i){
colnames(data[[i]])[8] == "month"
}))]) %>%
mutate(covid_deaths_per_100k = covid_deaths / population * 100000,
excess_deaths_per_100k = excess_deaths / population * 100000,
excess_deaths_pct_change = (total_deaths / expected_deaths) - 1)
# Deduplication
if(max(table(with(all_monthly_excess_deaths, paste0(country, "_", region, "_", year, "_", month)))) != 1){stop("Duplications in monthly data, please inspect")}
}
# Save quarterly data
if("quarterly" %in% frequencies_used){
all_quarterly_excess_deaths <- rbindlist(data[unlist(lapply(1:length(data), FUN = function(i){
colnames(data[[i]])[8] == "quarter"
}))]) %>%
mutate(covid_deaths_per_100k = covid_deaths / population * 100000,
excess_deaths_per_100k = excess_deaths / population * 100000,
excess_deaths_pct_change = (total_deaths / expected_deaths) - 1)
# Deduplication
if(max(table(with(all_quarterly_excess_deaths, paste0(country, "_", region, "_", year, "_", quarter)))) != 1){stop("Duplications in quarterly data, please inspect")}
}
# Check that values do not differ enormously from previous ones:
compare_weekly <- read.csv("output-data/excess-deaths/all_weekly_excess_deaths.csv")
compare_monthly <- read.csv("output-data/excess-deaths/all_monthly_excess_deaths.csv")
compare_quarterly <- read.csv("output-data/excess-deaths/all_quarterly_excess_deaths.csv")
# Define function to generate comparison with existing data:
gen_comparison <- function(data1 = all_weekly_excess_deaths,
data2 = compare_weekly,
frequency = "week"){
data1 <- data.frame(data1)
data2 <- data.frame(data2)
compare <- merge(data1[, c("country", "region",
"year", frequency,
"excess_deaths_per_100k",
"excess_deaths")],
data2[, c("country", "region",
"year", frequency,
"excess_deaths_per_100k",
"excess_deaths")],
by = c("country", "region", "year", frequency))
compare$diff <- abs(compare$excess_deaths.x - compare$excess_deaths.y)
compare$diff_per_100k <- abs(compare$excess_deaths_per_100k.x - compare$excess_deaths_per_100k.y)
return(compare_weekly)
}
# Prepare for comparison (this makes robust to any category eventually having no observations):
if(!exists('all_weekly_excess_deaths')){
all_weekly_excess_deaths <- read_csv("output-data/excess-deaths/all_weekly_excess_deaths.csv")
}
if(!exists('all_monthly_excess_deaths')){
all_monthly_excess_deaths <- read_csv("output-data/excess-deaths/all_monthly_excess_deaths.csv")
}
if(!exists('all_quarterly_excess_deaths')){
all_quarterly_excess_deaths <- read_csv("output-data/excess-deaths/all_quarterly_excess_deaths.csv")
}
week_comparison <- gen_comparison(data1 = all_weekly_excess_deaths,
data2 = compare_weekly,
frequency = "week")
month_comparison <- gen_comparison(data1 = all_monthly_excess_deaths,
data2 = compare_monthly,
frequency = "month")
if(max(week_comparison$diff) > 1000 |
max(month_comparison$diff) > 4000 |
max(week_comparison$diff_per_100k) > 5 |
max(month_comparison$diff_per_100k) > 20){
stop("Differences with former data is very large, please inspect manually")
} else {
# Export weekly deaths
if(exists("all_weekly_excess_deaths") & "weekly" %in% frequencies_used){
write.csv(all_weekly_excess_deaths,
file = "output-data/excess-deaths/all_weekly_excess_deaths.csv",
fileEncoding = "UTF-8", row.names=FALSE)
}
# Export monthly deaths
if(exists("all_monthly_excess_deaths") & "monthly" %in% frequencies_used){
write.csv(all_monthly_excess_deaths,
file = "output-data/excess-deaths/all_monthly_excess_deaths.csv",
fileEncoding = "UTF-8",row.names=FALSE)
}
# Export quarterly deaths
if(exists("all_quarterly_excess_deaths") & "quarterly" %in% frequencies_used){
write.csv(all_quarterly_excess_deaths,
file = "output-data/excess-deaths/all_quarterly_excess_deaths.csv",
fileEncoding = "UTF-8",row.names=FALSE)
}
}
# Check to ensure no country has fewer observations than in the immediately prior data update:
obs_matrix <- data.frame(table(c(all_weekly_excess_deaths$country[
!is.na(all_weekly_excess_deaths$excess_deaths_per_100k) &
all_weekly_excess_deaths$country == all_weekly_excess_deaths$region], all_monthly_excess_deaths$country[
!is.na(all_monthly_excess_deaths$excess_deaths_per_100k) &
all_monthly_excess_deaths$country == all_monthly_excess_deaths$region], all_quarterly_excess_deaths$country[!is.na(all_quarterly_excess_deaths$excess_deaths_per_100k) & all_quarterly_excess_deaths$country == all_quarterly_excess_deaths$region])))
last_update_matrix <- read_csv("output-data/observations_per_country.csv")
for(i in 1:nrow(last_update_matrix)){
if(last_update_matrix$Freq[i] > 1.1*obs_matrix$Freq[obs_matrix$Var1 == last_update_matrix$Var1[i]]){
if(last_update_matrix$Var1[i] != 'Peru'){
stop(paste0('Fewer observations than in latest update for ', last_update_matrix$Var1[i], " please inspect manually"))
}
}
}
write_csv(obs_matrix, "output-data/observations_per_country.csv")
# Step 5: repeat process, using non-iso weeks ---------------------------------------
cat('\n\n Repeating process for legacy export (i.e. of non-iso week data) \n\n')
# Import data
historical_deaths <- dir('output-data/alternative-exports-by-non-iso-week/historical-deaths')
# Cycle through countries
for(i in historical_deaths){
# Load data
dat <- fread(paste0('output-data/alternative-exports-by-non-iso-week/historical-deaths/', i))
# Get data frequency
dat_frequency <- paste0(colnames(dat)[8], "ly")
# Get country
country <- dat$country[1]
# Check that country in list of countries with data not from new country - if so, insert break:
if(!country %in% countries){
stop(paste0(country, " is a new country, please inspect manually to ensure consistency."))
}
# Get excess deaths, training a new model (except for South Africa, where expected deaths are provided explicitly):
res <- get_excess_deaths(dat,
expected_deaths_model = NULL,
frequency = dat_frequency)
# Move spaces to "_" make lower case for file names:
country <- tolower(unlist(gsub(" ", "_", country)))
# Save the model
saveRDS(res[[1]], paste0("output-data/alternative-exports-by-non-iso-week/expected-deaths-models/",
country, "_expected_deaths_model.RDS"))
# Save the results
write.csv(res[[2]],
paste0("output-data/alternative-exports-by-non-iso-week/excess-deaths/", country, "_excess_deaths.csv"),
fileEncoding = "UTF-8",row.names=FALSE)
}
# Combine weekly deaths and calculate per 100,000 people and percentage change
data <- lapply(setdiff(dir('output-data/alternative-exports-by-non-iso-week/excess-deaths/'),
c("all_monthly_excess_deaths.csv",
"all_quarterly_excess_deaths.csv",
"all_weekly_excess_deaths.csv")),
FUN = function(i){
temp <- read_csv(paste0('output-data/alternative-exports-by-non-iso-week/excess-deaths/', i))
temp$region_code <- as.character(temp$region_code)
temp})
# Save weekly data
if("weekly" %in% frequencies_used){
all_weekly_excess_deaths <- rbindlist(data[unlist(lapply(1:length(data), FUN = function(i){
colnames(data[[i]])[8] == "week"
}))]) %>%
mutate(covid_deaths_per_100k = covid_deaths / population * 100000,
excess_deaths_per_100k = excess_deaths / population * 100000,
excess_deaths_pct_change = (total_deaths / expected_deaths) - 1)
# Deduplication
if(max(table(with(all_weekly_excess_deaths, paste0(country, "_", region, "_", year, "_", week)))) != 1){stop("Duplications in weekly data, please inspect")}
}
# Save monthly data
if("monthly" %in% frequencies_used){
all_monthly_excess_deaths <- rbindlist(data[unlist(lapply(1:length(data), FUN = function(i){
colnames(data[[i]])[8] == "month"
}))]) %>%
mutate(covid_deaths_per_100k = covid_deaths / population * 100000,
excess_deaths_per_100k = excess_deaths / population * 100000,
excess_deaths_pct_change = (total_deaths / expected_deaths) - 1)
# Deduplication
if(max(table(with(all_monthly_excess_deaths, paste0(country, "_", region, "_", year, "_", month)))) != 1){stop("Duplications in monthly data, please inspect")}
}
# Save quarterly data
if("quarterly" %in% frequencies_used){
all_quarterly_excess_deaths <- rbindlist(data[unlist(lapply(1:length(data), FUN = function(i){
colnames(data[[i]])[8] == "quarter"
}))]) %>%
mutate(covid_deaths_per_100k = covid_deaths / population * 100000,
excess_deaths_per_100k = excess_deaths / population * 100000,
excess_deaths_pct_change = (total_deaths / expected_deaths) - 1)
# Deduplication
if(max(table(with(all_quarterly_excess_deaths, paste0(country, "_", region, "_", year, "_", quarter)))) != 1){stop("Duplications in quarterly data, please inspect")}
}
# Export weekly deaths
if(exists("all_weekly_excess_deaths") & "weekly" %in% frequencies_used){
write.csv(all_weekly_excess_deaths,
file = "output-data/excess-deaths/all_weekly_excess_deaths.csv",
fileEncoding = "UTF-8", row.names=FALSE)
}
# Export monthly deaths
if(exists("all_monthly_excess_deaths") & "monthly" %in% frequencies_used){
write.csv(all_monthly_excess_deaths,
file = "output-data/excess-deaths/all_monthly_excess_deaths.csv",
fileEncoding = "UTF-8", row.names=FALSE)
}
# Export quarterly deaths
if(exists("all_quarterly_excess_deaths") & "quarterly" %in% frequencies_used){
write.csv(all_quarterly_excess_deaths,
file = "output-data/excess-deaths/all_quarterly_excess_deaths.csv",
fileEncoding = "UTF-8", row.names=FALSE)
}