@@ -7,13 +7,8 @@ Installation
77The Python package is hosted on the
88`Python Package Index (PyPI) <https://pypi.org/project/torchio/ >`_.
99
10- To install the latest PyTorch version before installing TorchIO, it is
11- recommended to use `light-the-torch <https://github.com/pmeier/light-the-torch >`_::
12-
13- $ pip install light-the-torch && ltt install torch
14-
1510The latest published version of TorchIO can be installed using Pip Installs
16- Packages (`` pip `` )::
11+ Packages (PIP )::
1712
1813 $ pip install torchio
1914
@@ -25,12 +20,15 @@ If you would like to install Matplotlib to use the plotting features, use::
2520
2621 $ pip install torchio[plot]
2722
23+ You can also install TorchIO with Conda::
24+
25+ $ conda install -c conda-forge torchio
2826
2927If you are on Windows and have
3028`trouble installing TorchIO <https://github.com/TorchIO-project/torchio/issues/343 >`_,
3129try `installing PyTorch <https://pytorch.org/get-started/locally/ >`_ with
32- `conda <https://docs.conda.io/en/latest/miniconda.html >`_ before pip-installing
33- TorchIO.
30+ `conda <https://docs.conda.io/en/latest/miniconda.html >`_
31+ before pip-installing TorchIO.
3432
3533Hello, World!
3634-------------
@@ -50,13 +48,15 @@ in parallel::
5048 t1=tio.ScalarImage('subject_a.nii.gz'),
5149 label=tio.LabelMap('subject_a.nii'),
5250 diagnosis='positive',
51+ age=36,
5352 )
5453
5554 # Image files can be in any format supported by SimpleITK or NiBabel, including DICOM
5655 subject_b = tio.Subject(
5756 t1=tio.ScalarImage('subject_b_dicom_folder'),
5857 label=tio.LabelMap('subject_b_seg.nrrd'),
5958 diagnosis='negative',
59+ age=24,
6060 )
6161
6262 # Images may also be created using PyTorch tensors or NumPy arrays
@@ -65,9 +65,14 @@ in parallel::
6565 t1=tio.ScalarImage(tensor=tensor_4d),
6666 label=tio.LabelMap(tensor=(tensor_4d > 0.5)),
6767 diagnosis='negative',
68+ age=19,
6869 )
6970
70- subjects_list = [subject_a, subject_b, subject_c]
71+ subjects_list = [
72+ subject_a,
73+ subject_b,
74+ subject_c,
75+ ]
7176
7277 # Let's use one preprocessing transform and one augmentation transform
7378 # This transform will be applied only to scalar images:
0 commit comments