-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFigure3-rna-fm_seperate.Rmd
641 lines (511 loc) · 21.9 KB
/
Figure3-rna-fm_seperate.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
---
title: "Figure3 - RNAseq"
author: "E Onur Karakaslar"
date: "1/15/2020"
output: html_document
---
```{r setup, include=FALSE}
require(knitr)
knitr::opts_chunk$set(echo = TRUE)
opts_knit$set(root.dir = "/Users/karako/Dropbox (JAX)/MouseAging_clean/") #set root dir!
```
```{r library}
library(useR) # for clear function, you can delete this one.
library(edgeR) # finding Differentially Expressed genes
library(limma) # for quantile normalization
library(dplyr) # using pipe (%>%) and select
library(ggpubr)
library(ggplot2)
library(writexl)
library(tidyverse)
library(preprocessCore)
```
```{r save_as_RData}
save_as_RData <- function(){
count_matrix <- read.csv("data/RNAseq/F3_input/rna_count_matrix.csv")
cols <- colnames(count_matrix[,-1]) %>%strsplit(".", fixed = T)
tissues <- sapply(cols, function(x){
x[4]
})
bm <- count_matrix [ , c(1 , which(tissues == "BM") + 1)]
pbl <- count_matrix [ , c(1 , which(tissues == "PBL") + 1)]
naive <- count_matrix [ , c(1 , which(tissues == "naive") + 1)]
spleen <- count_matrix [ , c(1 , which(tissues == "spleen") + 1)]
memory <- count_matrix [ , c(1 , which(tissues == "memory") + 1)]
save(bm , file = "data/RNAseq/F3_input/rnaseq-expcount-bm.RData")
save(pbl , file = "data/RNAseq/F3_input/rnaseq-expcount-pbl.RData")
save(naive , file = "data/RNAseq/F3_input/rnaseq-expcount-naive.RData")
save(spleen, file = "data/RNAseq/F3_input/rnaseq-expcount-spleen.RData")
save(memory, file = "data/RNAseq/F3_input/rnaseq-expcount-memory.RData")
}
```
```{r preprocess-data}
preprocess_data <- function(tissue_cell_type){
cat (paste0("Loading RNAseq data for: ", toupper(tissue_cell_type), "\n"))
name <- load (paste0("./data/RNAseq/F3_input/rnaseq-expcount-",tissue_cell_type,'.RData'))
count.matrix <- get(name)
gene.names <- count.matrix[,1]
count.matrix <- count.matrix[,-1]
sample_rna <- colnames(count.matrix) %>% strsplit(".", fixed = T)
STRAIN = TYPE <- sapply(sample_rna, function(x){
x[1]
})
AGE <- sapply(sample_rna, function(x){
as.numeric(gsub("([0-9]+).*$", "\\1", x[2] %>% trimws))
})
GENDER <- sapply(sample_rna, function(x){
x[3]
})
TISSUE <- sapply(sample_rna, function(x){
x[4]
})
SAMPLEMOUSEID <- sapply(sample_rna, function(x){
x[5]
})
specs = NULL
specs$STRAIN <- STRAIN
specs$TYPE <- TYPE
specs$AGE <- AGE
specs$GENDER <- GENDER
specs$TISSUE <- TISSUE
specs$SAMPLEMOUSEID <- SAMPLEMOUSEID
result <- list(count.matrix = count.matrix,gene.names=gene.names, specs=specs)
return (result)
}
```
```{r load genesets}
load_genesets <- function(){
load('data/genesets/scRNA_and_DICE/geneset.info.RData')
assign("selected_genesets", value = list(
scrnaseq_tcells_specific_10x = geneset.genes.scrnaseq_tcells_specific_10x,
vp2008 = geneset.genes.vp2008,
wp = geneset.genes.wp,
scrnaseq_tcells_expressed_10x = geneset.genes.scrnaseq_tcells_expressed_10x,
scrnaseq_pbmc_top = geneset.genes.scrnaseq_pbmc_top,
scrnaseq_pbmc_simple_exclusive = geneset.genes.scrnaseq_pbmc_simple_exclusive,
scrnaseq_pbmc_simple_specific = geneset.genes.scrnaseq_pbmc_simple_specific,
#gobp = geneset.genes.gobp,
#gomf = geneset.genes.gomf,
dice_major = geneset.genes.dice_major
), envir = .GlobalEnv)
selected_genesets_mice <- lapply(selected_genesets, function(gs){
gs %>% convertHumanGeneList
})
assign("selected_genesets_mice", selected_genesets_mice, .GlobalEnv)
assign("selected_genesets_labels", list(
scrnaseq_tcells_specific_10x = geneset.names.scrnaseq_tcells_specific_10x,
vp2008 = geneset.names.vp2008,
wp = geneset.names.wp,
scrnaseq_tcells_expressed_10x = geneset.names.scrnaseq_tcells_expressed_10x,
scrnaseq_pbmc_top = geneset.names.scrnaseq_pbmc_top,
scrnaseq_pbmc_simple_exclusive = geneset.names.scrnaseq_pbmc_simple_exclusive,
scrnaseq_pbmc_simple_specific = geneset.names.scrnaseq_pbmc_simple_specific,
#gobp = geneset.names.gobp,
#gomf = geneset.names.gomf,
dice_major = geneset.names.dice_major
), envir = .GlobalEnv)
assign("union_size",
lapply(selected_genesets, function(gs){
gs[,"GeneName"]
}) %>% unlist(recursive = F) %>% unique %>% length, envir = .GlobalEnv)
}
```
```{r convert_genesets}
# Basic function to convert human gene names to mouse ensembl gene ids
convertHumanGeneList <- function(x){
x_genename <- x [,"GeneName"] %>% unique
require("biomaRt")
if (!exists("human")){
assign( x = "human",
value = useMart("ensembl", dataset = "hsapiens_gene_ensembl"),
envir = .GlobalEnv)
cat("Human Genes are imported...\n")
}
if (!exists("mouse")){
assign( x = "mouse",
value = useMart("ensembl", dataset = "mmusculus_gene_ensembl"),
envir = .GlobalEnv)
cat("Mouse Genes are imported...\n")
}
# map from human to mice
genesV2 = getLDS(attributes = c("hgnc_symbol"),
filters = "hgnc_symbol",
values = x_genename ,
mart = human,
attributesL = c("ensembl_gene_id"),
martL = mouse, uniqueRows=T)
# each human genome should be unique, so 1 to 1 map should be possible
# genesV2 <- genesV2[ !duplicated(genesV2$HGNC.symbol),]
genesV2 <- genesV2[ !duplicated(genesV2$Gene.stable.ID),]
humanx <- merge(x, genesV2, by.x = "GeneName", by.y = "HGNC.symbol")
return(humanx)
}
```
```{r}
#' Differential Expression Analysis
#'
#' This function takes a count matrix, normalizes it with TMM and returns a fit matrix
#'
#' @param data raw count matrix, rownames should be Gene IDs
#' @param specs specialities of mice: age, gender, strain
#' @return fit matrix which can be used later for differential analysis
DE_fit <- function(count.matrix, specs){
y <- DGEList(counts = count.matrix)
keep <- filterByExpr(y, min.count = 1)
y <- y[keep,,keep.lib.sizes = F]
y <- calcNormFactors(object = y, method = "TMM")
group <- factor(paste(specs$GENDER,specs$AGE,specs$TYPE,sep="."))
design <- model.matrix(~0+group)
colnames(design) <- levels(group)
y <- estimateDisp(y, design)
fit <- glmQLFit(y, design, robust = TRUE) # recommended in edgeR manual 4.4.7
return (fit)
}
```
```{r DE_fit_quantile}
#' Differential Expression Analysis
#'
#' This function takes a count matrix normalizes it with quantile normalization and
#' return fit matrix.
#'
#' @param data raw count matrix, rownames should be Gene IDs
#' @param specs specialities of mice: age, gender, strain
#' @return fit matrix which can be used later for differential analysis
DE_fit_quantile <- function(count.matrix, specs){
y <- DGEList(counts = count.matrix)
keep <- filterByExpr(y, min.count=1)
y <- y[keep,,keep.lib.sizes=F]
y <- calcNormFactors(object = y, method = "none")
group <- factor(paste(specs$GENDER,specs$AGE,specs$TYPE,sep="."))
design <- model.matrix(~0+group)
colnames(design) <- levels(group)
rownames(design) <- colnames(count.matrix)
v <- voom(y,design,plot = F, normalize.method ="quantile")
fit <- lmFit(v, design)
fit$aveLogCPM <- aveLogCPM(count.matrix)
return (fit)
}
```
```{r DE_test}
#' @param fit matrix containing model parameters and design matrix
#' @param contrast DE contrast
#' @return qlm f-test in edgeR (qlf)
DE_test <- function(fit, contrast ="Gender_3.B6"){
contrasts.age_sex_str <- makeContrasts(
Gender_3.B6 = (M.3.B6 - F.3.B6),
Gender_3.NZO = (M.3.NZO - F.3.NZO),
Gender_18.B6 = (M.18.B6 - F.18.B6),
Gender_18.NZO = (M.18.NZO - F.18.NZO),
Age18vs3_M.B6 = (M.18.B6 - M.3.B6),
Age18vs3_M.NZO = (M.18.NZO - M.3.NZO),
Age18vs3_F.B6 = (F.18.B6 - F.3.B6),
Age18vs3_F.NZO = (F.18.NZO - F.3.NZO),
levels = fit$design)
qlf <- glmQLFTest(fit, contrast = contrasts.age_sex_str[, contrast])
return(qlf)
}
```
```{r DE_test_quantile}
DE_test_quantile <- function (fit, contrast = "Gender_3.B6"){
contrasts.age_sex_str <- makeContrasts(
Gender_3.B6 = (M.3.B6 - F.3.B6),
Gender_3.NZO = (M.3.NZO - F.3.NZO),
Gender_18.B6 = (M.18.B6 - F.18.B6),
Gender_18.NZO = (M.18.NZO - F.18.NZO),
Age18vs3_M.B6 = (M.18.B6 - M.3.B6),
Age18vs3_M.NZO = (M.18.NZO - M.3.NZO),
Age18vs3_F.B6 = (F.18.B6 - F.3.B6),
Age18vs3_F.NZO = (F.18.NZO - F.3.NZO),
levels = fit$design)
tmp <- contrasts.fit(fit, contrasts.age_sex_str[, contrast])
tmp <- eBayes(tmp)
return (tmp)
}
```
```{r DE_toptags}
#' @param adjust.method default is BH, check p.adjust doc for more
#' @param p.value determines FDR threshold
#' @param n number of returned genes
DE_toptags <- function(qlf, p.value = 1, adjust.method = "BH", n = Inf){
top.tags <- topTags(qlf, n = n, adjust.method = adjust.method, p.value = p.value)
return (top.tags)
}
```
```{r DE_toptags_quantile}
DE_toptags_quantile <- function (tmp, sort.by = "p", n = Inf, p.value = 1){
top.table <- topTable(tmp, sort.by = sort.by, n = Inf, p.value = p.value)
return(top.table)
}
```
```{r DE_annotate_genes}
DE_annotate_genes <- function (top.table, gene.names){
opening_gene_locs <- top.table[top.table$logFC > 0,] %>% rownames %>% as.numeric
closing_gene_locs <- top.table[top.table$logFC < 0,] %>% rownames %>% as.numeric
opening_genes <- gene.names[opening_gene_locs] %>% as.character
closing_genes <- gene.names[closing_gene_locs] %>% as.character
opening_genes <- cbind(Gene.Name = opening_genes, top.table[top.table$logFC > 0,])
closing_genes <- cbind(Gene.Name = closing_genes, top.table[top.table$logFC < 0,])
return(list(opening_genes = opening_genes, closing_genes = closing_genes))
}
```
```{r check_genesets}
check_genesets <- function (genes, tissue_cell_type, contrast, union_size = 20e3){
# Up regulated genes specs
genes_up_tbl <- genes[[1]]
# Down regulated genes specs
genes_down_tbl <- genes[[2]]
# Change between TMM and Quantile fitting
loc_up <- match(c("P.Value","adj.P.Val"), colnames(genes_up_tbl))
if(!is.na(loc_up[1])) {
colnames(genes_up_tbl)[c(loc_up)] <- c("PValue","FDR")
colnames(genes_down_tbl)[c(loc_up)] <- c("PValue","FDR")
}
# These are mice gene names which are differentially expressed.
genes_up <- genes_up_tbl [, "Gene.Name"] %>% as.character
genes_down <- genes_down_tbl[, "Gene.Name"] %>% as.character
# create an empty dataframe for enriched modules,
# so that later we can sort them and prepare excel tables, yey!
enriched_modules_df <- data.frame()
# for each geneset, iterate each module
for (i in 1:length(selected_genesets)){
geneset_name <- names(selected_genesets_labels)[[i]]
module_names <- selected_genesets_labels[[i]]
modules <- selected_genesets_mice [[i]]
modules <- merge(modules, module_names, by = "Module.ID")
# here we create empty p values, geneset name vectors so that we can adjust p values later
module_count <- nrow(module_names)
vector_p_up <- vector_p_down <- numeric(module_count)
vector_module_names <- vector_geneset_names <- character(module_count)
# iterate the modules
cat ("Geneset Name:", geneset_name, "\n")
for (j in 1:nrow(module_names)){
module_ID <- module_names[j, "Module.ID"]
module_name <- module_names[j, "Module.Name"]
module <- modules[modules$Module.Name %in% module_name, "Gene.stable.ID"]
# module gene count (constant for up/down)
gene_count_module <- unique(module) %>% length
# upregulated gene count
n_up <- length(genes_up)
# overlapped up-regulated genes with the module
q_up <- genes_up %in% module %>% sum
# here we calculate the probability of having a bigger intersection
# than the count of overlapping genes given the module size and the total gene count.
# we substract 1 for removing the equality when the lower.tail = F, which changes P(X<x) to 1-P(X>=x).
p_up <- phyper(q_up-1, gene_count_module, union_size - gene_count_module, n_up,
lower.tail = F, log.p = F)
# upregulated gene count
n_down <- length(genes_down)
# overlapped down-regulated genes with the module
q_down <- genes_down %in% module %>% sum
# downregulated gene count
p_down <- phyper(q_down-1, gene_count_module, union_size - gene_count_module, n_down,
lower.tail = F, log.p = F)
vector_p_up[j] <- p_up
vector_p_down[j] <- p_down
vector_geneset_names[j] <- names(selected_genesets)[[i]]
vector_module_names[j] <- module_name
}
df_up <- data.frame(geneset.name = vector_geneset_names,
module.name = vector_module_names,
p = vector_p_up,
stringsAsFactors = F)
df_down <- data.frame(geneset.name = vector_geneset_names,
module.name = vector_module_names,
p = vector_p_down,
stringsAsFactors = F)
# adjust the p-values for each module
df_up$adj.p <- p.adjust(p = df_up$p , method = "fdr")
df_down$adj.p <- p.adjust(p = df_down$p, method = "fdr")
# sort according to adjusted p-values and then to p-values
df_up <- df_up [order(df_up$adj.p , df_up$p) ,]
df_down <- df_down[order(df_down$adj.p, df_down$p),]
# this is an important parameter since it affects the number of modules that are chosen
fdr.threshold <- 0.05
# check if any modules are enriched for up regulated genes
if (any(df_up$adj.p < fdr.threshold)){
# take the enriched modules
enriched_modules <- df_up[df_up$adj.p < fdr.threshold,]
# add enriched modules to dataframe
enriched_modules_df <- cbind(TCT = tissue_cell_type,
Contrast = contrast,
enriched_modules,
Status="Opening",
Overlapping.Genes = NA) %>% rbind(enriched_modules_df)
for (k in 1:nrow(enriched_modules)){
enriched_module_name <- enriched_modules[k, "module.name"]
module.genes <- modules[modules$Module.Name %in% enriched_module_name,]
module.genes <- merge(module.genes, genes_up_tbl,
by.x = "Gene.stable.ID", by.y = "Gene.Name", all.x = T)
module.genes <- module.genes %>% arrange(FDR)
enriched_modules_df$Overlapping.Genes[k] <-
module.genes[!is.na(module.genes$FDR),]$GeneName %>%
paste(collapse = ",")
filename <- paste0("output/RNAseq_Enrichment/fm_seperate/",
tissue_cell_type,"-",geneset_name,
"-", contrast,"-",
gsub("/", "_", enriched_module_name),"-UpRegulated.csv")
cat (paste0("\tSaving ", filename, "\n"))
write.csv(module.genes, file = filename)
}
}
# check if any modules are enriched for down regulated genes
# To-Do: I know I should make this a function...
if (any(df_down$adj.p < fdr.threshold)){
# take the enriched modules
enriched_modules <- df_down[df_down$adj.p < fdr.threshold,]
# add enriched modules to dataframe
enriched_modules_df <- cbind(TCT = tissue_cell_type,
Contrast = contrast,
enriched_modules,
Status="Closing",
Overlapping.Genes = NA) %>% rbind(enriched_modules_df)
for (k in 1:nrow(enriched_modules)){
enriched_module_name <- enriched_modules[k, "module.name"]
module.genes <- modules[modules$Module.Name %in% enriched_module_name,]
module.genes <- merge(module.genes, genes_down_tbl,
by.x = "Gene.stable.ID", by.y = "Gene.Name", all.x = T)
module.genes <- module.genes %>% arrange(FDR)
enriched_modules_df$Overlapping.Genes[k] <-
module.genes[!is.na(module.genes$FDR),]$GeneName %>%
paste(collapse = ",")
filename <- paste0("output/RNAseq_Enrichment/fm_seperate/",
tissue_cell_type,"-",geneset_name,
"-", contrast,"-",
gsub("/", "_", enriched_module_name),"-DownRegulated.csv")
cat (paste0("\tSaving ", filename, "\n"))
write.csv(module.genes, file = filename)
}
}
}
if (nrow(enriched_modules_df) == 0) return (NULL)
cat ("\t\t\tEnriched module count:", nrow(enriched_modules_df), "\n")
return (enriched_modules_df)
}
```
```{r er_plot}
er_plot <- function(){
plot_and_save <- function(df_, strain_name){
for (var in unique(df_$geneset.name)){
p <- ggplot(df_[ df_$geneset.name == var,],
aes(x=module.name, y=Contrast, color = Status, size = -log10(p))) +
geom_point() +
coord_flip() +
scale_color_manual(values=c("blue", "red")) + ggtitle(var) + facet_wrap(~TCT) + theme_minimal()
if (var == 'wp'){
width_ = 20
height_ = 20
} else {
width_ = 10
height_ = 6
}
ggsave(paste0('output/F3/GSEA/RNAseq/fm_seperate/', var,"-",strain_name, '.pdf'),
plot = p,
units = "in",
width = width_,
height = height_,
useDingbats = FALSE
)
}
}
file_list <- list.files(path)
all_modules <- lapply(file_list, function(x){
read.csv(paste0(path, x), stringsAsFactors = F) %>% data.frame
})
df <- do.call("rbind", all_modules)
df$TCT[df$TCT == "naive"] <- "CD8+ Naive"
df$TCT[df$TCT == "memory"] <- "CD8+ Memory"
df$TCT[df$TCT == "bm"] <- "BM"
df$TCT[df$TCT == "spleen"] <- "SPLEEN"
df$TCT[df$TCT == "pbl"] <- "PBL"
tissue_only <- T
if (tissue_only){
df <- df[df$TCT == "BM" | df$TCT == "SPLEEN" | df$TCT == "PBL",]
}
df_b6 <- df[df$Contrast == "Age18vs3_M.B6" | df$Contrast == "Age18vs3_F.B6",]
df_nzo <- df[df$Contrast == "Age18vs3_M.NZO" | df$Contrast == "Age18vs3_F.NZO",]
plot_and_save(df_b6, "b6")
plot_and_save(df_nzo, "nzo")
}
```
```{r}
#' @param doTMM if set TRUE, do all analyses with TMM which does not require limma package.
#' @param fit_cache given a parameter it will record trained models for each tissue.
#' @param tissue_cell_type pbl, spleen, naive, memory, bm
#' @return fit model matrix
run_tissue <- function(tissue_cell_type, fit_cache = NULL, doTMM = FALSE){
data <- preprocess_data (tissue_cell_type)
specs <- data$specs
gene.names <- data$gene.names
count.matrix <- data$count.matrix
if (is.null(fit_cache)){
if (doTMM) fit <- DE_fit(count.matrix, specs)
else fit <- DE_fit_quantile(count.matrix, specs)
} else {
fit <- fit_cache[[tissue_cell_type]]
}
contrasts <- c("Gender_3.B6","Gender_3.NZO","Gender_18.B6","Gender_18.NZO",
"Age18vs3_M.B6","Age18vs3_M.NZO","Age18vs3_F.B6","Age18vs3_F.NZO")
er_modules_list <- lapply(contrasts, function(contrast, tissue_cell_type){
cat (paste0("For ", contrast,":\n"))
tmp <- DE_test_quantile(fit, contrast)
top.table <- DE_toptags_quantile(tmp, p.value = 0.05)
if (!is.null(top.table)){
genes <- DE_annotate_genes(top.table, gene.names)
cat (paste0("\tupreg_genes ----", genes$opening_genes %>% nrow))
cat (paste0("\tdownreg_genes ----", genes$closing_genes %>% nrow, "\n"))
if (genes$opening_genes %>% nrow > 0 & genes$closing_genes %>% nrow > 0){
er_modules <- check_genesets(genes, tissue_cell_type, contrast)
return (er_modules)
}
}
}, tissue_cell_type = tissue_cell_type)
# make the list a table!
er_modules <- do.call("rbind", er_modules_list)
filename_er_modules <- paste0("output/RNAseq_Enrichment/fm_seperate/er_modules/",
tissue_cell_type, "_er_summary.csv")
write.csv(er_modules, file = filename_er_modules)
return(fit)
}
```
```{r run_analyses}
list <- c("naive", "memory", "pbl", "spleen")
# This is an important parameter, if you want to train all fit matrices
# from strach you need to make this FALSE, so it won't use the cached models!
use_fit_cache = TRUE
load_geneset = FALSE
# PART 1
if (use_fit_cache){
load("analysis/cache/rna_fit_matrices.RData")
load("analysis/cache/rna_enrichment_analysis.Rdata")
lapply(list, function(tissue_cell_type, fit_cache){
run_tissue(tissue_cell_type, fit_cache)
}, fit_cache) %>% invisible
} else {
if (load_geneset) load_genesets() # may take a while
else load("analysis/cache/rna_enrichment_analysis.Rdata")
fit_cache <- lapply(list, function(tissue_cell_type){
run_tissue(tissue_cell_type)
})
names(fit_cache) <- list
save(fit_cache, file = "analysis/cache/rna_fit_matrices.RData")
save(human, mouse, union_size, selected_genesets, selected_genesets_mice, selected_genesets_labels,
file = "analysis/cache/rna_enrichment_analysis.Rdata")
}
# PART 2
# Uncomment to compare TMM and Quantile Normalization
# lapply(list, DE_ correlation) %>% invisible
# PART 3
# Barplots
# Before you can use it, you may need to run the PART 1 with use_fit_cache = F
# so that a fit_cache matrix will be generated and saved.
# if (use_fit_cache){
# load("analysis/cache/fit_matrices.RData")
# all_bar_plots <- lapply(list, function(tissue_cell_type, fit_cache){
# create_bar_plots(tissue_cell_type, fit_cache)
# }, fit_cache) %>% invisible
# names(all_bar_plots) <- list
# draw_bar_plots(all_bar_plots)
# }
# PART 4
# Barplots for enrichment analyses
```