Skip to content

PyTorch TransformerEncoder #330

Open
@mohamedhassanmus

Description

@mohamedhassanmus

Hi,

I am trying to convert a model containing PyTorch TransformerEncoder but I am getting this error with Barracuda 3.0.0

Exception: Must have input rank for /seqTransEncoder/layers.0/self_attn/Slice_output_0 in order to convert Reshape to NHWC
Unity.Barracuda.Compiler.Passes.NCHWToNHWCPass.<InstantiateRewriterNCHWToNHWC>b__4_0 (Unity.Barracuda.Layer layer, Unity.Barracuda.ModelBuilder net) (at Library/PackageCache/[email protected]/Barracuda/Runtime/Core/Compiler/Passes/NCHWToNHWC/RewriterNCHWToNHWC.cs:80)
Unity.Barracuda.Compiler.Passes.NCHWToNHWCPass.Rewrite (Unity.Barracuda.Model& model) (at Library/PackageCache/[email protected]/Barracuda/Runtime/Core/Compiler/Passes/NCHWToNHWCPass.cs:139)
Unity.Barracuda.Compiler.Passes.NCHWToNHWCPass.Run (Unity.Barracuda.Model& model) (at Library/PackageCache/[email protected]/Barracuda/Runtime/Core/Compiler/Passes/NCHWToNHWCPass.cs:39)
Unity.Barracuda.Compiler.Passes.IntermediateToRunnableNHWCPass.Run (Unity.Barracuda.Model& model) (at Library/PackageCache/[email protected]/Barracuda/Runtime/Core/Compiler/Passes/IntermediateToRunnableNHWCPass.cs:38)
Unity.Barracuda.ONNX.ONNXModelConverter.Convert (Google.Protobuf.CodedInputStream inputStream) (at Library/PackageCache/[email protected]/Barracuda/Runtime/ONNX/ONNXModelConverter.cs:188)
Unity.Barracuda.ONNX.ONNXModelConverter.Convert (System.String filePath) (at Library/PackageCache/[email protected]/Barracuda/Runtime/ONNX/ONNXModelConverter.cs:98)
Unity.Barracuda.ONNXModelImporter.OnImportAsset (UnityEditor.AssetImporters.AssetImportContext ctx) (at Library/PackageCache/[email protected]/Barracuda/Editor/ONNXModelImporter.cs:65)
UnityEditor.AssetImporters.ScriptedImporter.GenerateAssetData (UnityEditor.AssetImporters.AssetImportContext ctx) (at <964670f15c6b47f9b8f9340732720473>:0)

My model is here

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        trans_enc_layer = nn.TransformerEncoderLayer(d_model=32,
                                                     nhead=4,
                                                     dim_feedforward=64)

        self.seqTransEncoder = nn.TransformerEncoder(trans_enc_layer,
                                                     num_layers=1)

    def forward(self, x):
        return self.seqTransEncoder(x)


model = Model()
x = torch.randn(7, 1, 32)
y = model(x)

output_file_name = 'model.onnx'
torch.onnx.export(
    model,
    x,
    output_file_name,
    training=torch.onnx.TrainingMode.EVAL,
)

In addition, the outputs I get in PyTorch and onnxruntime seems to be different. When I use

ort_session = ort.InferenceSession(output_file_name)
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}
ort_outs = ort_session.run(None, ort_inputs)
np.testing.assert_allclose(to_numpy(y), ort_outs[0], rtol=1e-03, atol=1e-05)

I get the following

Not equal to tolerance rtol=0.001, atol=1e-05

Mismatched elements: 224 / 224 (100%)
Max absolute difference: 0.96960294
Max relative difference: 14.14618

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions