-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_CNN.py
72 lines (58 loc) · 2.42 KB
/
model_CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import keras
import pandas as pd
import numpy as np
from keras import Sequential, layers, models, callbacks, losses, optimizers, metrics
input_size = (64, 64, 1)
model = keras.Sequential(
[
keras.layers.Input(shape = input_size),
keras.layers.Conv2D(32, kernel_size = (3,3), activation = "relu"),
keras.layers.Conv2D(32, kernel_size = (3,3), activation = "relu"),
keras.layers.MaxPooling2D(pool_size = (2,2)),
keras.layers.Conv2D(16, kernel_size = (3,3), activation = "relu"),
keras.layers.Conv2D(16, kernel_size = (3,3), activation = "relu"),
keras.layers.GlobalAveragePooling2D(),
keras.layers.Dense(128, activation = "relu"),
keras.layers.Dropout(0.5),
keras.layers.Dense(3, activation = "softmax")
]
)
model.summary()
model.compile(
loss = keras.losses.CategoricalCrossentropy(),
optimizer= keras.optimizers.Adam(),
metrics = [
keras.metrics.CategoricalAccuracy(name = 'categ'), 'accuracy'
]
)
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_new = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_new = ImageDataGenerator(rescale=1./255)
training = train_new.flow_from_directory('C:/Users/JYOTI/Downloads/DEEP_LEARNING/sign_language/data/train',
target_size=(64, 64),
batch_size=5,
color_mode='grayscale',
class_mode='categorical')
testing = test_new.flow_from_directory('C:/Users/JYOTI/Downloads/DEEP_LEARNING/sign_language/data/test',
target_size=(64, 64),
batch_size=5,
color_mode='grayscale',
class_mode='categorical')
model.fit(
training,
steps_per_epoch=210, #number of images in train
epochs=10,
validation_data=testing,
validation_steps=90 #number of images in test
)
#SAVE THE MODEL
#to save architecture
model_json = model.to_json()
with open("model_json","w") as json_file:
json_file.write(model_json)
#to save weights
model.save_weights("model_json.weights.h5")