|
1 | 1 | <a href="https://github.com/WenjieDu/PyPOTS"> |
2 | | - <img src="https://pypots.com/figs/pypots_logos/PyPOTS/logo_FFBG.svg" width="200" align="right"> |
| 2 | + <img src="https://pypots.com/figs/pypots_logos/PyPOTS/logo_FFBG.svg" width="210" align="right"> |
3 | 3 | </a> |
4 | 4 |
|
5 | 5 | <h3 align="center">欢迎来到PyPOTS</h3> |
|
8 | 8 |
|
9 | 9 | <p align="center"> |
10 | 10 | <a href="https://docs.pypots.com/en/latest/install.html#reasons-of-version-limitations-on-dependencies"> |
11 | | - <img alt="Python version" src="https://img.shields.io/badge/Python-v3.8+-E97040?logo=python&logoColor=white"> |
| 11 | + <img alt="Python version" src="https://img.shields.io/badge/Python-v3.8+-F8C6B5?logo=python&logoColor=white"> |
12 | 12 | </a> |
13 | | - <a href="https://www.google.com/search?q=%22PyPOTS%22+site%3Apytorch.org"> |
14 | | - <img alt="powered by Pytorch" src="https://img.shields.io/badge/PyTorch-%E2%9D%A4%EF%B8%8F-F8C6B5?logo=pytorch&logoColor=white"> |
15 | | - </a> |
16 | | - <a href="https://github.com/WenjieDu/PyPOTS/releases"> |
17 | | - <img alt="the latest release version" src="https://img.shields.io/github/v/release/wenjiedu/pypots?color=EE781F&include_prereleases&label=Release&logo=github&logoColor=white"> |
| 13 | + <a href="https://landscape.pytorch.org/?item=modeling--specialized--pypots"> |
| 14 | + <img alt="Pytorch landscape" src="https://img.shields.io/badge/PyTorch%20Landscape-EE4C2C?logo=pytorch&logoColor=white"> |
18 | 15 | </a> |
19 | 16 | <a href="https://github.com/WenjieDu/PyPOTS/blob/main/LICENSE"> |
20 | 17 | <img alt="BSD-3 license" src="https://img.shields.io/badge/License-BSD--3-E9BB41?logo=opensourceinitiative&logoColor=white"> |
|
25 | 22 | <a href="https://github.com/WenjieDu/PyPOTS#-community"> |
26 | 23 | <img alt="Community" src="https://img.shields.io/badge/join_us-community!-C8A062"> |
27 | 24 | </a> |
| 25 | + <a href="https://github.com/WenjieDu/PyPOTS/releases"> |
| 26 | + <img alt="the latest release version" src="https://img.shields.io/github/v/release/wenjiedu/pypots?color=EE781F&include_prereleases&label=Release&logo=github&logoColor=white"> |
| 27 | + </a> |
28 | 28 | <a href="https://github.com/WenjieDu/PyPOTS/graphs/contributors"> |
29 | 29 | <img alt="GitHub contributors" src="https://img.shields.io/github/contributors/wenjiedu/pypots?color=D8E699&label=Contributors&logo=GitHub"> |
30 | 30 | </a> |
|
66 | 66 | </a> |
67 | 67 | </p> |
68 | 68 |
|
| 69 | + |
69 | 70 | ⦿ `开发背景`: 由于传感器故障、通信异常以及不可预见的未知原因, 在现实环境中收集的时间序列数据普遍存在缺失值, |
70 | 71 | 这使得部分观测时间序列(partially-observed time series, 简称为POTS)成为现实世界数据的建模中普遍存在的问题. |
71 | 72 | 数据缺失会严重阻碍数据的高级分析、建模、与后续应用, 所以如何直接面向POTS建模成为一个亟需解决的问题. |
@@ -130,15 +131,15 @@ PyPOTS当前支持多变量POTS数据的插补, 预测, 分类, 聚类以及异 |
130 | 131 | | Neural Net | TimesNet[^14] | ✅ | ✅ | ✅ | | ✅ | `2023 - ICLR` | |
131 | 132 | | Neural Net | PatchTST🧑🔧[^18] | ✅ | | | | ✅ | `2023 - ICLR` | |
132 | 133 | | Neural Net | ETSformer🧑🔧[^19] | ✅ | | | | ✅ | `2023 - ICLR` | |
133 | | -| Neural Net | MICN🧑🔧[^27] | ✅ | | | | | `2023 - ICLR` | |
134 | | -| Neural Net | DLinear🧑🔧[^17] | ✅ | | | | ✅ | `2023 - AAAI` | |
| 134 | +| Neural Net | MICN🧑🔧[^27] | ✅ | ✅ | | | | `2023 - ICLR` | |
| 135 | +| Neural Net | DLinear🧑🔧[^17] | ✅ | ✅ | | | ✅ | `2023 - AAAI` | |
135 | 136 | | Neural Net | TiDE🧑🔧[^28] | ✅ | | | | | `2023 - TMLR` | |
136 | 137 | | Neural Net | CSAI[^42] | ✅ | | ✅ | | | `2023 - arXiv` | |
137 | 138 | | Neural Net | SegRNN🧑🔧[^43] | ✅ | ✅ | | | ✅ | `2023 - arXiv` | |
138 | 139 | | Neural Net | TS2Vec[^48] | | | ✅ | | | `2022 - AAAI` | |
139 | 140 | | Neural Net | SCINet🧑🔧[^30] | ✅ | | | | ✅ | `2022 - NeurIPS` | |
140 | 141 | | Neural Net | Nonstationary Tr.🧑🔧[^25] | ✅ | | | | ✅ | `2022 - NeurIPS` | |
141 | | -| Neural Net | FiLM🧑🔧[^22] | ✅ | | | | ✅ | `2022 - NeurIPS` | |
| 142 | +| Neural Net | FiLM🧑🔧[^22] | ✅ | ✅ | | | ✅ | `2022 - NeurIPS` | |
142 | 143 | | Neural Net | RevIN_SCINet🧑🔧[^31] | ✅ | | | | | `2022 - ICLR` | |
143 | 144 | | Neural Net | Pyraformer🧑🔧[^26] | ✅ | | | | ✅ | `2022 - ICLR` | |
144 | 145 | | Neural Net | Raindrop[^5] | | | ✅ | | | `2022 - ICLR` | |
@@ -312,7 +313,7 @@ saits.load("save_it_here/saits_physionet2012.pypots") # 重新加载模型用 |
312 | 313 |
|
313 | 314 | PyPOTS的论文可以[在arXiv上获取](https://arxiv.org/abs/2305.18811), 其5页的短版论文已被第9届SIGKDD international workshop |
314 | 315 | on Mining and Learning from Time Series ([MiLeTS'23](https://kdd-milets.github.io/milets2023/))收录, 与此同时, |
315 | | -PyPOTS也已被纳入[PyTorch Ecosystem](https://pytorch.org/ecosystem/). 我们正在努力将其发表在更具影响力的学术刊物上, |
| 316 | +PyPOTS也已被纳入[PyTorch Ecosystem](https://landscape.pytorch.org/?item=modeling--specialized--pypots). 我们正在努力将其发表在更具影响力的学术刊物上, |
316 | 317 | 如JMLR (track for [Machine Learning Open Source Software](https://www.jmlr.org/mloss/)). |
317 | 318 | 如果你在工作中使用了PyPOTS, 请按照以下格式引用我们的论文并为将项目设为星标🌟, 以便让更多人关注到它, 对此我们深表感谢🤗. |
318 | 319 |
|
|
0 commit comments