|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": { |
| 6 | + "pycharm": { |
| 7 | + "name": "#%% md\n" |
| 8 | + } |
| 9 | + }, |
| 10 | + "source": [ |
| 11 | + "From [pyvtreat issue 12](https://github.com/WinVector/pyvtreat/issues/12)" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": 1, |
| 17 | + "metadata": { |
| 18 | + "pycharm": { |
| 19 | + "is_executing": false |
| 20 | + } |
| 21 | + }, |
| 22 | + "outputs": [ |
| 23 | + { |
| 24 | + "name": "stdout", |
| 25 | + "output_type": "stream", |
| 26 | + "text": [ |
| 27 | + "model score: 0.880\n" |
| 28 | + ] |
| 29 | + } |
| 30 | + ], |
| 31 | + "source": [ |
| 32 | + "import pandas as pd\n", |
| 33 | + "import numpy as np\n", |
| 34 | + "import numpy.random\n", |
| 35 | + "import vtreat\n", |
| 36 | + "import vtreat.util\n", |
| 37 | + "from sklearn.linear_model import LogisticRegression\n", |
| 38 | + "from sklearn.pipeline import Pipeline\n", |
| 39 | + "from sklearn.model_selection import train_test_split\n", |
| 40 | + "\n", |
| 41 | + "numpy.random.seed(2019)\n", |
| 42 | + "\n", |
| 43 | + "def make_data(nrows):\n", |
| 44 | + " d = pd.DataFrame({'x': 5*numpy.random.normal(size=nrows)})\n", |
| 45 | + " d['y'] = numpy.sin(d['x']) + 0.1*numpy.random.normal(size=nrows)\n", |
| 46 | + " d.loc[numpy.arange(3, 10), 'x'] = numpy.nan # introduce a nan level\n", |
| 47 | + " d['xc'] = ['level_' + str(5*numpy.round(yi/5, 1)) for yi in d['y']]\n", |
| 48 | + " d['x2'] = np.random.normal(size=nrows)\n", |
| 49 | + " d.loc[d['xc']=='level_-1.0', 'xc'] = numpy.nan # introduce a nan level\n", |
| 50 | + " d['yc'] = d['y']>0.5\n", |
| 51 | + " return d\n", |
| 52 | + "\n", |
| 53 | + "df = make_data(500)\n", |
| 54 | + "\n", |
| 55 | + "df = df.drop(columns=['y'])\n", |
| 56 | + "\n", |
| 57 | + "transform = vtreat.BinomialOutcomeTreatment(outcome_target=True)\n", |
| 58 | + "\n", |
| 59 | + "clf = Pipeline(steps=[\n", |
| 60 | + " ('preprocessor', transform),\n", |
| 61 | + " ('classifier', LogisticRegression(solver = 'lbfgs'))]\n", |
| 62 | + ")\n", |
| 63 | + "\n", |
| 64 | + "X, y = df, df.pop('yc')\n", |
| 65 | + "\n", |
| 66 | + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)\n", |
| 67 | + "\n", |
| 68 | + "clf.fit(X_train, y_train)\n", |
| 69 | + "\n", |
| 70 | + "print(\"model score: %.3f\" % clf.score(X_test, y_test))" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": 2, |
| 76 | + "metadata": { |
| 77 | + "collapsed": false, |
| 78 | + "jupyter": { |
| 79 | + "outputs_hidden": false |
| 80 | + }, |
| 81 | + "pycharm": { |
| 82 | + "is_executing": false, |
| 83 | + "name": "#%%\n" |
| 84 | + } |
| 85 | + }, |
| 86 | + "outputs": [ |
| 87 | + { |
| 88 | + "name": "stderr", |
| 89 | + "output_type": "stream", |
| 90 | + "text": [ |
| 91 | + "/Users/johnmount/opt/anaconda3/envs/ai_academy_3_7/lib/python3.7/site-packages/vtreat/vtreat_api.py:369: UserWarning: called transform on same data used to fit (this causes over-fit, please use fit_transform() instead)\n", |
| 92 | + " \"called transform on same data used to fit (this causes over-fit, please use fit_transform() instead)\")\n" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "data": { |
| 97 | + "text/plain": [ |
| 98 | + "0.93" |
| 99 | + ] |
| 100 | + }, |
| 101 | + "execution_count": 2, |
| 102 | + "metadata": {}, |
| 103 | + "output_type": "execute_result" |
| 104 | + } |
| 105 | + ], |
| 106 | + "source": [ |
| 107 | + "clf.score(X_train, y_train)" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "markdown", |
| 112 | + "metadata": {}, |
| 113 | + "source": [ |
| 114 | + "The above fit is an over-fit (not achievable without data leakage). Notice vtreat gave as a warning." |
| 115 | + ] |
| 116 | + }, |
| 117 | + { |
| 118 | + "cell_type": "code", |
| 119 | + "execution_count": 3, |
| 120 | + "metadata": { |
| 121 | + "collapsed": false, |
| 122 | + "jupyter": { |
| 123 | + "outputs_hidden": false |
| 124 | + }, |
| 125 | + "pycharm": { |
| 126 | + "is_executing": false, |
| 127 | + "name": "#%%\n" |
| 128 | + } |
| 129 | + }, |
| 130 | + "outputs": [ |
| 131 | + { |
| 132 | + "name": "stdout", |
| 133 | + "output_type": "stream", |
| 134 | + "text": [ |
| 135 | + "Pipeline(memory=None,\n", |
| 136 | + " steps=[('preprocessor',\n", |
| 137 | + " vtreat.vtreat_api.BinomialOutcomeTreatment(outcome_target=True,\n", |
| 138 | + "params={'coders': {'clean_copy',\n", |
| 139 | + " 'deviation_code',\n", |
| 140 | + " 'impact_code',\n", |
| 141 | + " 'indicator_code',\n", |
| 142 | + " 'logit_code',\n", |
| 143 | + " 'missing_indicator',\n", |
| 144 | + " 'prevalence_code'},\n", |
| 145 | + " 'cross_validation_k': 5,\n", |
| 146 | + " 'cross_validation_plan': <vtreat.cross_plan.KWayCrossPlanYStratified object at 0x10fa81b50>,\n", |
| 147 | + " '...\n", |
| 148 | + " 'missingness_imputation': <function mean at 0x11093bb90>,\n", |
| 149 | + " 'sparse_indicators': True,\n", |
| 150 | + " 'use_hierarchical_estimate': True,\n", |
| 151 | + " 'user_transforms': []},\n", |
| 152 | + ")),\n", |
| 153 | + " ('classifier',\n", |
| 154 | + " LogisticRegression(C=1.0, class_weight=None, dual=False,\n", |
| 155 | + " fit_intercept=True, intercept_scaling=1,\n", |
| 156 | + " l1_ratio=None, max_iter=100,\n", |
| 157 | + " multi_class='warn', n_jobs=None,\n", |
| 158 | + " penalty='l2', random_state=None,\n", |
| 159 | + " solver='lbfgs', tol=0.0001, verbose=0,\n", |
| 160 | + " warm_start=False))],\n", |
| 161 | + " verbose=False)\n" |
| 162 | + ] |
| 163 | + } |
| 164 | + ], |
| 165 | + "source": [ |
| 166 | + "print(clf)" |
| 167 | + ] |
| 168 | + }, |
| 169 | + { |
| 170 | + "cell_type": "code", |
| 171 | + "execution_count": 4, |
| 172 | + "metadata": { |
| 173 | + "collapsed": false, |
| 174 | + "jupyter": { |
| 175 | + "outputs_hidden": false |
| 176 | + }, |
| 177 | + "pycharm": { |
| 178 | + "is_executing": false, |
| 179 | + "name": "#%%\n" |
| 180 | + } |
| 181 | + }, |
| 182 | + "outputs": [ |
| 183 | + { |
| 184 | + "name": "stdout", |
| 185 | + "output_type": "stream", |
| 186 | + "text": [ |
| 187 | + "['x_is_bad', 'xc_is_bad', 'x', 'x2', 'xc_logit_code', 'xc_prevalence_code', 'xc_lev_level_1_0', 'xc_lev__NA_', 'xc_lev_level_-0_5', 'xc_lev_level_0_5']\n" |
| 188 | + ] |
| 189 | + } |
| 190 | + ], |
| 191 | + "source": [ |
| 192 | + "print(transform.get_feature_names())" |
| 193 | + ] |
| 194 | + }, |
| 195 | + { |
| 196 | + "cell_type": "code", |
| 197 | + "execution_count": 5, |
| 198 | + "metadata": { |
| 199 | + "collapsed": false, |
| 200 | + "jupyter": { |
| 201 | + "outputs_hidden": false |
| 202 | + }, |
| 203 | + "pycharm": { |
| 204 | + "is_executing": false, |
| 205 | + "name": "#%%\n" |
| 206 | + } |
| 207 | + }, |
| 208 | + "outputs": [ |
| 209 | + { |
| 210 | + "name": "stdout", |
| 211 | + "output_type": "stream", |
| 212 | + "text": [ |
| 213 | + "{'use_hierarchical_estimate': True, 'coders': {'prevalence_code', 'logit_code', 'indicator_code', 'deviation_code', 'impact_code', 'missing_indicator', 'clean_copy'}, 'filter_to_recommended': True, 'indicator_min_fraction': 0.1, 'cross_validation_plan': <vtreat.cross_plan.KWayCrossPlanYStratified object at 0x10fa81b50>, 'cross_validation_k': 5, 'user_transforms': [], 'sparse_indicators': True, 'missingness_imputation': <function mean at 0x11093bb90>, 'outcome_target': True}\n" |
| 214 | + ] |
| 215 | + } |
| 216 | + ], |
| 217 | + "source": [ |
| 218 | + "print(transform.get_params())\n" |
| 219 | + ] |
| 220 | + }, |
| 221 | + { |
| 222 | + "cell_type": "code", |
| 223 | + "execution_count": 6, |
| 224 | + "metadata": { |
| 225 | + "collapsed": false, |
| 226 | + "jupyter": { |
| 227 | + "outputs_hidden": false |
| 228 | + }, |
| 229 | + "pycharm": { |
| 230 | + "is_executing": false, |
| 231 | + "name": "#%%\n" |
| 232 | + } |
| 233 | + }, |
| 234 | + "outputs": [ |
| 235 | + { |
| 236 | + "name": "stdout", |
| 237 | + "output_type": "stream", |
| 238 | + "text": [ |
| 239 | + "{'memory': None, 'steps': [('preprocessor', vtreat.vtreat_api.BinomialOutcomeTreatment(outcome_target=True,\n", |
| 240 | + "params={'coders': {'clean_copy',\n", |
| 241 | + " 'deviation_code',\n", |
| 242 | + " 'impact_code',\n", |
| 243 | + " 'indicator_code',\n", |
| 244 | + " 'logit_code',\n", |
| 245 | + " 'missing_indicator',\n", |
| 246 | + " 'prevalence_code'},\n", |
| 247 | + " 'cross_validation_k': 5,\n", |
| 248 | + " 'cross_validation_plan': <vtreat.cross_plan.KWayCrossPlanYStratified object at 0x10fa81b50>,\n", |
| 249 | + " 'filter_to_recommended': True,\n", |
| 250 | + " 'indicator_min_fraction': 0.1,\n", |
| 251 | + " 'missingness_imputation': <function mean at 0x11093bb90>,\n", |
| 252 | + " 'sparse_indicators': True,\n", |
| 253 | + " 'use_hierarchical_estimate': True,\n", |
| 254 | + " 'user_transforms': []},\n", |
| 255 | + ")), ('classifier', LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", |
| 256 | + " intercept_scaling=1, l1_ratio=None, max_iter=100,\n", |
| 257 | + " multi_class='warn', n_jobs=None, penalty='l2',\n", |
| 258 | + " random_state=None, solver='lbfgs', tol=0.0001, verbose=0,\n", |
| 259 | + " warm_start=False))], 'verbose': False, 'preprocessor': vtreat.vtreat_api.BinomialOutcomeTreatment(outcome_target=True,\n", |
| 260 | + "params={'coders': {'clean_copy',\n", |
| 261 | + " 'deviation_code',\n", |
| 262 | + " 'impact_code',\n", |
| 263 | + " 'indicator_code',\n", |
| 264 | + " 'logit_code',\n", |
| 265 | + " 'missing_indicator',\n", |
| 266 | + " 'prevalence_code'},\n", |
| 267 | + " 'cross_validation_k': 5,\n", |
| 268 | + " 'cross_validation_plan': <vtreat.cross_plan.KWayCrossPlanYStratified object at 0x10fa81b50>,\n", |
| 269 | + " 'filter_to_recommended': True,\n", |
| 270 | + " 'indicator_min_fraction': 0.1,\n", |
| 271 | + " 'missingness_imputation': <function mean at 0x11093bb90>,\n", |
| 272 | + " 'sparse_indicators': True,\n", |
| 273 | + " 'use_hierarchical_estimate': True,\n", |
| 274 | + " 'user_transforms': []},\n", |
| 275 | + "), 'classifier': LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", |
| 276 | + " intercept_scaling=1, l1_ratio=None, max_iter=100,\n", |
| 277 | + " multi_class='warn', n_jobs=None, penalty='l2',\n", |
| 278 | + " random_state=None, solver='lbfgs', tol=0.0001, verbose=0,\n", |
| 279 | + " warm_start=False), 'preprocessor__use_hierarchical_estimate': True, 'preprocessor__coders': {'prevalence_code', 'logit_code', 'indicator_code', 'deviation_code', 'impact_code', 'missing_indicator', 'clean_copy'}, 'preprocessor__filter_to_recommended': True, 'preprocessor__indicator_min_fraction': 0.1, 'preprocessor__cross_validation_plan': <vtreat.cross_plan.KWayCrossPlanYStratified object at 0x10fa81b50>, 'preprocessor__cross_validation_k': 5, 'preprocessor__user_transforms': [], 'preprocessor__sparse_indicators': True, 'preprocessor__missingness_imputation': <function mean at 0x11093bb90>, 'preprocessor__outcome_target': True, 'classifier__C': 1.0, 'classifier__class_weight': None, 'classifier__dual': False, 'classifier__fit_intercept': True, 'classifier__intercept_scaling': 1, 'classifier__l1_ratio': None, 'classifier__max_iter': 100, 'classifier__multi_class': 'warn', 'classifier__n_jobs': None, 'classifier__penalty': 'l2', 'classifier__random_state': None, 'classifier__solver': 'lbfgs', 'classifier__tol': 0.0001, 'classifier__verbose': 0, 'classifier__warm_start': False}\n" |
| 280 | + ] |
| 281 | + } |
| 282 | + ], |
| 283 | + "source": [ |
| 284 | + "print(clf.get_params())\n" |
| 285 | + ] |
| 286 | + } |
| 287 | + ], |
| 288 | + "metadata": { |
| 289 | + "kernelspec": { |
| 290 | + "display_name": "Python 3", |
| 291 | + "language": "python", |
| 292 | + "name": "python3" |
| 293 | + }, |
| 294 | + "language_info": { |
| 295 | + "codemirror_mode": { |
| 296 | + "name": "ipython", |
| 297 | + "version": 3 |
| 298 | + }, |
| 299 | + "file_extension": ".py", |
| 300 | + "mimetype": "text/x-python", |
| 301 | + "name": "python", |
| 302 | + "nbconvert_exporter": "python", |
| 303 | + "pygments_lexer": "ipython3", |
| 304 | + "version": "3.7.5" |
| 305 | + }, |
| 306 | + "pycharm": { |
| 307 | + "stem_cell": { |
| 308 | + "cell_type": "raw", |
| 309 | + "metadata": { |
| 310 | + "collapsed": false |
| 311 | + }, |
| 312 | + "source": [] |
| 313 | + } |
| 314 | + } |
| 315 | + }, |
| 316 | + "nbformat": 4, |
| 317 | + "nbformat_minor": 4 |
| 318 | +} |
0 commit comments