|
88 | 88 | "name": "stderr", |
89 | 89 | "output_type": "stream", |
90 | 90 | "text": [ |
91 | | - "/Users/johnmount/opt/anaconda3/envs/ai_academy_3_7/lib/python3.7/site-packages/vtreat/vtreat_api.py:369: UserWarning: called transform on same data used to fit (this causes over-fit, please use fit_transform() instead)\n", |
92 | | - " \"called transform on same data used to fit (this causes over-fit, please use fit_transform() instead)\")\n" |
| 91 | + "/Users/johnmount/opt/anaconda3/envs/ai_academy_3_7/lib/python3.7/site-packages/vtreat/vtreat_api.py:348: UserWarning: possibly called transform on same data used to fit (this causes over-fit, please use fit_transform() instead)\n", |
| 92 | + " \"possibly called transform on same data used to fit (this causes over-fit, please use fit_transform() instead)\")\n" |
93 | 93 | ] |
94 | 94 | }, |
95 | 95 | { |
|
134 | 134 | "text": [ |
135 | 135 | "Pipeline(memory=None,\n", |
136 | 136 | " steps=[('preprocessor',\n", |
137 | | - " vtreat.vtreat_api.BinomialOutcomeTreatment(outcome_target=True,\n", |
138 | | - "params={'coders': {'clean_copy',\n", |
139 | | - " 'deviation_code',\n", |
140 | | - " 'impact_code',\n", |
141 | | - " 'indicator_code',\n", |
142 | | - " 'logit_code',\n", |
143 | | - " 'missing_indicator',\n", |
144 | | - " 'prevalence_code'},\n", |
145 | | - " 'cross_validation_k': 5,\n", |
146 | | - " 'cross_validation_plan': <vtreat.cross_plan.KWayCrossPlanYStratified object at 0x10fa81b50>,\n", |
147 | | - " '...\n", |
148 | | - " 'missingness_imputation': <function mean at 0x11093bb90>,\n", |
149 | | - " 'sparse_indicators': True,\n", |
150 | | - " 'use_hierarchical_estimate': True,\n", |
151 | | - " 'user_transforms': []},\n", |
152 | | - ")),\n", |
| 137 | + " vtreat.vtreat_api.BinomialOutcomeTreatment(outcome_target=True, )),\n", |
153 | 138 | " ('classifier',\n", |
154 | 139 | " LogisticRegression(C=1.0, class_weight=None, dual=False,\n", |
155 | 140 | " fit_intercept=True, intercept_scaling=1,\n", |
|
210 | 195 | "name": "stdout", |
211 | 196 | "output_type": "stream", |
212 | 197 | "text": [ |
213 | | - "{'use_hierarchical_estimate': True, 'coders': {'prevalence_code', 'logit_code', 'indicator_code', 'deviation_code', 'impact_code', 'missing_indicator', 'clean_copy'}, 'filter_to_recommended': True, 'indicator_min_fraction': 0.1, 'cross_validation_plan': <vtreat.cross_plan.KWayCrossPlanYStratified object at 0x10fa81b50>, 'cross_validation_k': 5, 'user_transforms': [], 'sparse_indicators': True, 'missingness_imputation': <function mean at 0x11093bb90>, 'outcome_target': True}\n" |
| 198 | + "{}\n" |
214 | 199 | ] |
215 | 200 | } |
216 | 201 | ], |
|
236 | 221 | "name": "stdout", |
237 | 222 | "output_type": "stream", |
238 | 223 | "text": [ |
239 | | - "{'memory': None, 'steps': [('preprocessor', vtreat.vtreat_api.BinomialOutcomeTreatment(outcome_target=True,\n", |
240 | | - "params={'coders': {'clean_copy',\n", |
241 | | - " 'deviation_code',\n", |
242 | | - " 'impact_code',\n", |
243 | | - " 'indicator_code',\n", |
244 | | - " 'logit_code',\n", |
245 | | - " 'missing_indicator',\n", |
246 | | - " 'prevalence_code'},\n", |
247 | | - " 'cross_validation_k': 5,\n", |
248 | | - " 'cross_validation_plan': <vtreat.cross_plan.KWayCrossPlanYStratified object at 0x10fa81b50>,\n", |
249 | | - " 'filter_to_recommended': True,\n", |
250 | | - " 'indicator_min_fraction': 0.1,\n", |
251 | | - " 'missingness_imputation': <function mean at 0x11093bb90>,\n", |
252 | | - " 'sparse_indicators': True,\n", |
253 | | - " 'use_hierarchical_estimate': True,\n", |
254 | | - " 'user_transforms': []},\n", |
255 | | - ")), ('classifier', LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", |
| 224 | + "{'memory': None, 'steps': [('preprocessor', vtreat.vtreat_api.BinomialOutcomeTreatment(outcome_target=True, )), ('classifier', LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", |
256 | 225 | " intercept_scaling=1, l1_ratio=None, max_iter=100,\n", |
257 | 226 | " multi_class='warn', n_jobs=None, penalty='l2',\n", |
258 | 227 | " random_state=None, solver='lbfgs', tol=0.0001, verbose=0,\n", |
259 | | - " warm_start=False))], 'verbose': False, 'preprocessor': vtreat.vtreat_api.BinomialOutcomeTreatment(outcome_target=True,\n", |
260 | | - "params={'coders': {'clean_copy',\n", |
261 | | - " 'deviation_code',\n", |
262 | | - " 'impact_code',\n", |
263 | | - " 'indicator_code',\n", |
264 | | - " 'logit_code',\n", |
265 | | - " 'missing_indicator',\n", |
266 | | - " 'prevalence_code'},\n", |
267 | | - " 'cross_validation_k': 5,\n", |
268 | | - " 'cross_validation_plan': <vtreat.cross_plan.KWayCrossPlanYStratified object at 0x10fa81b50>,\n", |
269 | | - " 'filter_to_recommended': True,\n", |
270 | | - " 'indicator_min_fraction': 0.1,\n", |
271 | | - " 'missingness_imputation': <function mean at 0x11093bb90>,\n", |
272 | | - " 'sparse_indicators': True,\n", |
273 | | - " 'use_hierarchical_estimate': True,\n", |
274 | | - " 'user_transforms': []},\n", |
275 | | - "), 'classifier': LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", |
| 228 | + " warm_start=False))], 'verbose': False, 'preprocessor': vtreat.vtreat_api.BinomialOutcomeTreatment(outcome_target=True, ), 'classifier': LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", |
276 | 229 | " intercept_scaling=1, l1_ratio=None, max_iter=100,\n", |
277 | 230 | " multi_class='warn', n_jobs=None, penalty='l2',\n", |
278 | 231 | " random_state=None, solver='lbfgs', tol=0.0001, verbose=0,\n", |
279 | | - " warm_start=False), 'preprocessor__use_hierarchical_estimate': True, 'preprocessor__coders': {'prevalence_code', 'logit_code', 'indicator_code', 'deviation_code', 'impact_code', 'missing_indicator', 'clean_copy'}, 'preprocessor__filter_to_recommended': True, 'preprocessor__indicator_min_fraction': 0.1, 'preprocessor__cross_validation_plan': <vtreat.cross_plan.KWayCrossPlanYStratified object at 0x10fa81b50>, 'preprocessor__cross_validation_k': 5, 'preprocessor__user_transforms': [], 'preprocessor__sparse_indicators': True, 'preprocessor__missingness_imputation': <function mean at 0x11093bb90>, 'preprocessor__outcome_target': True, 'classifier__C': 1.0, 'classifier__class_weight': None, 'classifier__dual': False, 'classifier__fit_intercept': True, 'classifier__intercept_scaling': 1, 'classifier__l1_ratio': None, 'classifier__max_iter': 100, 'classifier__multi_class': 'warn', 'classifier__n_jobs': None, 'classifier__penalty': 'l2', 'classifier__random_state': None, 'classifier__solver': 'lbfgs', 'classifier__tol': 0.0001, 'classifier__verbose': 0, 'classifier__warm_start': False}\n" |
| 232 | + " warm_start=False), 'classifier__C': 1.0, 'classifier__class_weight': None, 'classifier__dual': False, 'classifier__fit_intercept': True, 'classifier__intercept_scaling': 1, 'classifier__l1_ratio': None, 'classifier__max_iter': 100, 'classifier__multi_class': 'warn', 'classifier__n_jobs': None, 'classifier__penalty': 'l2', 'classifier__random_state': None, 'classifier__solver': 'lbfgs', 'classifier__tol': 0.0001, 'classifier__verbose': 0, 'classifier__warm_start': False}\n" |
280 | 233 | ] |
281 | 234 | } |
282 | 235 | ], |
|
0 commit comments