@@ -144,14 +144,14 @@ dTestC <- data.frame(x=c('a','b','c',NA),z=c(10,20,30,NA))
144144treatmentsC <- designTreatmentsC(dTrainC ,colnames(dTrainC ),' y' ,TRUE ,
145145 verbose = FALSE )
146146print(treatmentsC $ scoreFrame [,c(' origName' , ' varName' , ' code' , ' rsq' , ' sig' , ' extraModelDegrees' )])
147- # origName varName code rsq sig extraModelDegrees
148- # 1 x x_lev_NA lev 2.960654e-01 0.09248399 0
149- # 2 x x_lev_x.a lev 1.300057e-01 0.26490379 0
150- # 3 x x_lev_x.b lev 6.067337e-03 0.80967242 0
151- # 4 x x_catP catP 1.030137e-01 0.32099590 2
152- # 5 x x_catB catB 1.125399e-05 0.99172381 2
153- # 6 z z_clean clean 2.376018e-01 0.13176020 0
154- # 7 z z_isBAD isBAD 2.960654e-01 0.09248399 0
147+ # origName varName code rsq sig extraModelDegrees
148+ # 1 x x_lev_NA lev 0.296065432 0.09248399 0
149+ # 2 x x_lev_x.a lev 0.130005705 0.26490379 0
150+ # 3 x x_lev_x.b lev 0.006067337 0.80967242 0
151+ # 4 x x_catP catP 0.060049677 0.44862725 2
152+ # 5 x x_catB catB 0.127625394 0.26932340 2
153+ # 6 z z_clean clean 0.237601767 0.13176020 0
154+ # 7 z z_isBAD isBAD 0.296065432 0.09248399 0
155155
156156# help("prepare")
157157
@@ -191,15 +191,15 @@ dTestN <- data.frame(x=c('a','b','c',NA),z=c(10,20,30,NA))
191191treatmentsN = designTreatmentsN(dTrainN ,colnames(dTrainN ),' y' ,
192192 verbose = FALSE )
193193print(treatmentsN $ scoreFrame [,c(' origName' , ' varName' , ' code' , ' rsq' , ' sig' , ' extraModelDegrees' )])
194- # origName varName code rsq sig extraModelDegrees
195- # 1 x x_lev_NA lev 3.333333e-01 0.1339746 0
196- # 2 x x_lev_x.a lev 2.500000e-01 0.2070312 0
197- # 3 x x_lev_x.b lev 1.110223e-16 1.0000000 0
198- # 4 x x_catP catP 3.558824e -01 0.1184999 2
199- # 5 x x_catN catN 3.132648e-02 0.6750039 2
200- # 6 x x_catD catD 4.512437e -02 0.6135229 2
201- # 7 z z_clean clean 2.880952e-01 0.1701892 0
202- # 8 z z_isBAD isBAD 3.333333e-01 0.1339746 0
194+ # origName varName code rsq sig extraModelDegrees
195+ # 1 x x_lev_NA lev 3.333333e-01 0.13397460 0
196+ # 2 x x_lev_x.a lev 2.500000e-01 0.20703125 0
197+ # 3 x x_lev_x.b lev 1.110223e-16 0.99999998 0
198+ # 4 x x_catP catP 4.047085e -01 0.08994062 2
199+ # 5 x x_catN catN 2.822908e-01 0.17539581 2
200+ # 6 x x_catD catD 2.096931e -02 0.73225708 2
201+ # 7 z z_clean clean 2.880952e-01 0.17018920 0
202+ # 8 z z_isBAD isBAD 3.333333e-01 0.13397460 0
203203dTrainNTreated <- prepare(treatmentsN ,dTrainN ,pruneSig = 1.0 ,scale = TRUE )
204204varsN <- setdiff(colnames(dTrainNTreated ),' y' )
205205# all input variables should be mean 0
0 commit comments