Skip to content

Commit b7efde5

Browse files
committed
pull
2 parents 5a339c1 + c319624 commit b7efde5

File tree

2 files changed

+7
-7
lines changed

2 files changed

+7
-7
lines changed

README.Rmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,7 @@ values). Other input columns are possible explanatory variables
3232
have missing values) that the user later wants to use to predict "y".
3333
In practice such an input `data.frame` may not be immediately suitable
3434
for machine learning procedures that often expect only numeric
35-
explanatory variables, and may not tolerate missing value.
35+
explanatory variables, and may not tolerate missing values.
3636

3737
To solve this, `vtreat` builds a transformed `data.frame` where all
3838
explanatory variable columns have been transformed into a number of

README.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ explanatory variables (typically numeric or categorical/string-valued,
1616
these columns may have missing values) that the user later wants to use
1717
to predict “y”. In practice such an input `data.frame` may not be
1818
immediately suitable for machine learning procedures that often expect
19-
only numeric explanatory variables, and may not tolerate missing value.
19+
only numeric explanatory variables, and may not tolerate missing values.
2020

2121
To solve this, `vtreat` builds a transformed `data.frame` where all
2222
explanatory variable columns have been transformed into a number of
@@ -305,8 +305,8 @@ treatmentsC <- designTreatmentsC(dTrainC, colnames(dTrainC), 'y', TRUE,
305305
verbose=FALSE)
306306
print(treatmentsC$scoreFrame[, c('origName', 'varName', 'code', 'rsq', 'sig', 'extraModelDegrees')])
307307
# origName varName code rsq sig extraModelDegrees
308-
# 1 x x_catP catP 1.559780e-01 0.22202097 2
309-
# 2 x x_catB catB 1.142159e-05 0.99166241 2
308+
# 1 x x_catP catP 1.030137e-01 0.32099590 2
309+
# 2 x x_catB catB 1.125399e-05 0.99172381 2
310310
# 3 z z clean 2.376018e-01 0.13176020 0
311311
# 4 z z_isBAD isBAD 2.960654e-01 0.09248399 0
312312
# 5 x x_lev_NA lev 2.960654e-01 0.09248399 0
@@ -349,9 +349,9 @@ treatmentsN = designTreatmentsN(dTrainN, colnames(dTrainN), 'y',
349349
verbose=FALSE)
350350
print(treatmentsN$scoreFrame[, c('origName', 'varName', 'code', 'rsq', 'sig', 'extraModelDegrees')])
351351
# origName varName code rsq sig extraModelDegrees
352-
# 1 x x_catP catP 3.558824e-01 0.1184999 2
353-
# 2 x x_catN catN 2.663337e-02 0.6993947 2
354-
# 3 x x_catD catD 4.226472e-02 0.6252538 2
352+
# 1 x x_catP catP 2.105263e-01 0.2528101 2
353+
# 2 x x_catN catN 3.205128e-03 0.8940756 2
354+
# 3 x x_catD catD 6.666667e-02 0.5369633 2
355355
# 4 z z clean 2.880952e-01 0.1701892 0
356356
# 5 z z_isBAD isBAD 3.333333e-01 0.1339746 0
357357
# 6 x x_lev_NA lev 3.333333e-01 0.1339746 0

0 commit comments

Comments
 (0)