@@ -16,7 +16,7 @@ explanatory variables (typically numeric or categorical/string-valued,
1616these columns may have missing values) that the user later wants to use
1717to predict “y”. In practice such an input ` data.frame ` may not be
1818immediately suitable for machine learning procedures that often expect
19- only numeric explanatory variables, and may not tolerate missing value .
19+ only numeric explanatory variables, and may not tolerate missing values .
2020
2121To solve this, ` vtreat ` builds a transformed ` data.frame ` where all
2222explanatory variable columns have been transformed into a number of
@@ -305,8 +305,8 @@ treatmentsC <- designTreatmentsC(dTrainC, colnames(dTrainC), 'y', TRUE,
305305 verbose = FALSE )
306306print(treatmentsC $ scoreFrame [, c(' origName' , ' varName' , ' code' , ' rsq' , ' sig' , ' extraModelDegrees' )])
307307 # origName varName code rsq sig extraModelDegrees
308- # 1 x x_catP catP 1.559780e -01 0.22202097 2
309- # 2 x x_catB catB 1.142159e -05 0.99166241 2
308+ # 1 x x_catP catP 1.030137e -01 0.32099590 2
309+ # 2 x x_catB catB 1.125399e -05 0.99172381 2
310310 # 3 z z clean 2.376018e-01 0.13176020 0
311311 # 4 z z_isBAD isBAD 2.960654e-01 0.09248399 0
312312 # 5 x x_lev_NA lev 2.960654e-01 0.09248399 0
@@ -349,9 +349,9 @@ treatmentsN = designTreatmentsN(dTrainN, colnames(dTrainN), 'y',
349349 verbose = FALSE )
350350print(treatmentsN $ scoreFrame [, c(' origName' , ' varName' , ' code' , ' rsq' , ' sig' , ' extraModelDegrees' )])
351351 # origName varName code rsq sig extraModelDegrees
352- # 1 x x_catP catP 3.558824e -01 0.1184999 2
353- # 2 x x_catN catN 2.663337e-02 0.6993947 2
354- # 3 x x_catD catD 4.226472e -02 0.6252538 2
352+ # 1 x x_catP catP 2.105263e -01 0.2528101 2
353+ # 2 x x_catN catN 3.205128e-03 0.8940756 2
354+ # 3 x x_catD catD 6.666667e -02 0.5369633 2
355355 # 4 z z clean 2.880952e-01 0.1701892 0
356356 # 5 z z_isBAD isBAD 3.333333e-01 0.1339746 0
357357 # 6 x x_lev_NA lev 3.333333e-01 0.1339746 0
0 commit comments