forked from clMathLibraries/clSPARSE
-
Notifications
You must be signed in to change notification settings - Fork 1
/
sample-cg.cpp
285 lines (222 loc) · 9.05 KB
/
sample-cg.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/* ************************************************************************
* Copyright 2015 Vratis, Ltd.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* ************************************************************************ */
/*! \file
* \brief Simple demonstration code for how to execute an iterative CG solver with
* clSPARSE
*/
#include <iostream>
#include <vector>
#define CL_HPP_ENABLE_EXCEPTIONS
#define CL_HPP_MINIMUM_OPENCL_VERSION BUILD_CLVERSION
#define CL_HPP_TARGET_OPENCL_VERSION BUILD_CLVERSION
#include <CL/cl2.hpp>
#include "clSPARSE.h"
#include "clSPARSE-error.h"
/*!
* \brief Sample Conjugate Gradients Solver (CG C++)
* \details Solves equation A * x = b
*
* A - [m x n] matrix in CSR format
* x - dense vector of n elements (unknowns)
* b - dense vector of m elements (rhs)
*
* Program presents usage of clSPARSE Conjugate Gradients iterative algorithm
* for solving system of linear equations with positive definite matrix in CSR
* format.
*
* Currently clSPARSE offers only one preconditioner which is Jacobi (Diagonal)
* algorithm. (check src/solvers/preconditioners/preconditioner.hpp and diagonal.hpp)
*
* For more theoretical details check
* http://www.cs.cmu.edu/~./quake-papers/painless-conjugate-gradient.pdf
*
*
*/
int main (int argc, char* argv[])
{
//parse command line
std::string matrix_path;
if (argc < 2)
{
std::cout << "Not enough parameters. "
<< "Please specify path to matrix in mtx format as parameter"
<< std::endl;
return -1;
}
else
{
matrix_path = std::string(argv[1]);
}
std::cout << "Executing sample clSPARSE CG Solver (A*x = b) C++" << std::endl;
std::cout << "Matrix will be read from: " << matrix_path << std::endl;
/** Step 1. Setup OpenCL environment; **/
// Init OpenCL environment;
cl_int cl_status;
// Get OpenCL platforms
std::vector<cl::Platform> platforms;
cl_status = cl::Platform::get(&platforms);
if (cl_status != CL_SUCCESS)
{
std::cout << "Problem with getting OpenCL platforms"
<< " [" << cl_status << "]" << std::endl;
return -2;
}
int platform_id = 0;
for (const auto& p : platforms)
{
std::cout << "Platform ID " << platform_id++ << " : "
<< p.getInfo<CL_PLATFORM_NAME>() << std::endl;
}
// Using first platform
platform_id = 0;
cl::Platform platform = platforms[platform_id];
// Get device from platform
std::vector<cl::Device> devices;
cl_status = platform.getDevices(CL_DEVICE_TYPE_GPU, &devices);
if (cl_status != CL_SUCCESS)
{
std::cout << "Problem with getting devices from platform"
<< " [" << platform_id << "] " << platform.getInfo<CL_PLATFORM_NAME>()
<< " error: [" << cl_status << "]" << std::endl;
}
std::cout << std::endl
<< "Getting devices from platform " << platform_id << std::endl;
cl_int device_id = 0;
for (const auto& device : devices)
{
std::cout << "Device ID " << device_id++ << " : "
<< device.getInfo<CL_DEVICE_NAME>() << std::endl;
}
// Using first device;
device_id = 0;
cl::Device device = devices[device_id];
// Create OpenCL context;
cl::Context context (device);
// Create OpenCL queue;
cl::CommandQueue queue(context, device);
/** Step 2. Setup GPU buffers **/
//we will allocate it after matrix will be loaded;
cldenseVector x;
clsparseInitVector(&x);
cldenseVector b;
clsparseInitVector(&b);
clsparseCsrMatrix A;
clsparseInitCsrMatrix(&A);
/** Step 3. Init clSPARSE library **/
clsparseStatus status = clsparseSetup();
if (status != clsparseSuccess)
{
std::cout << "Problem with executing clsparseSetup()" << std::endl;
return -3;
}
// Create clSPARSE control object it require queue for kernel execution
clsparseCreateResult createResult = clsparseCreateControl( queue( ) );
CLSPARSE_V( createResult.status, "Failed to create clsparse control" );
// Read matrix from file. Calculates the rowBlocks structures as well.
clsparseIdx_t nnz, row, col;
// read MM header to get the size of the matrix;
clsparseStatus fileError
= clsparseHeaderfromFile( &nnz, &row, &col, matrix_path.c_str( ) );
if( fileError != clsparseSuccess )
{
std::cout << "Could not read matrix market header from disk" << std::endl;
return -5;
}
A.num_nonzeros = nnz;
A.num_rows = row;
A.num_cols = col;
// Allocate memory for CSR matrix
A.values = ::clCreateBuffer( context(), CL_MEM_READ_ONLY,
A.num_nonzeros * sizeof( float ), NULL, &cl_status );
A.col_indices = ::clCreateBuffer( context(), CL_MEM_READ_ONLY,
A.num_nonzeros * sizeof( clsparseIdx_t ), NULL, &cl_status );
A.row_pointer = ::clCreateBuffer( context(), CL_MEM_READ_ONLY,
( A.num_rows + 1 ) * sizeof( clsparseIdx_t ), NULL, &cl_status );
// Read matrix market file with explicit zero values included.
fileError = clsparseSCsrMatrixfromFile( &A, matrix_path.c_str( ), createResult.control, true );
// This function allocates memory for rowBlocks structure. If not called
// the structure will not be calculated and clSPARSE will run the vectorized
// version of SpMV instead of adaptive;
clsparseCsrMetaCreate( &A, createResult.control );
if (fileError != clsparseSuccess)
{
std::cout << "Problem with reading matrix from " << matrix_path
<< " Error: " << status << std::endl;
return -6;
}
float one = 1.0f;
float zero = 0.0f;
// Allocate memory for vector of unknowns;
// We will fill it with zeros as a initial guess
x.num_values = A.num_cols;
x.values = clCreateBuffer(context(), CL_MEM_READ_ONLY, x.num_values * sizeof(float),
NULL, &cl_status);
cl_status = clEnqueueFillBuffer(queue(), x.values, &zero, sizeof(float),
0, x.num_values * sizeof(float), 0, nullptr, nullptr);
// Allocate memory for rhs vector
b.num_values = A.num_rows;
b.values = clCreateBuffer(context(), CL_MEM_READ_WRITE, b.num_values * sizeof(float),
NULL, &cl_status);
// Fill it with ones.
cl_status = clEnqueueFillBuffer(queue(), b.values, &one, sizeof(float),
0, b.num_values * sizeof(float), 0, nullptr, nullptr);
/**Step 4. Call the conjugate gradients algorithm */
// Create solver control object. It keeps the informations
// about the used preconditioner, desired relative and absolute tolerances
// and maximal number of iterations to be performed;
/* TODO:: missing getters of properties for solver control */
// We will use:
// preconditioner: diagonal
// relative tolerance: 1e-2
// absolute tolerance: 1e-5
// max iters: 1000
clsparseCreateSolverResult solverResult =
clsparseCreateSolverControl( DIAGONAL, 1000, 1e-2, 1e-5 );
CLSPARSE_V( solverResult.status, "Failed to create clsparse solver control" );
// We can set different print modes of the solver status:
// QUIET - print no messages (default)
// NORMAL - print summary
// VERBOSE - per iteration status;
clsparseSolverPrintMode( solverResult.control, VERBOSE);
/* TODO: provide various solver statuses for different scenarios
* Solver reached max number of iterations is not a failure.
*/
status = clsparseScsrcg(&x, &A, &b, solverResult.control, createResult.control );
//release solver control structure after finishing execution;
clsparseReleaseSolverControl( solverResult.control );
/** Step 5. Close & release resources */
status = clsparseReleaseControl( createResult.control );
if (status != clsparseSuccess)
{
std::cout << "Problem with releasing control object."
<< " Error: " << status << std::endl;
}
status = clsparseTeardown();
if (status != clsparseSuccess)
{
std::cout << "Problem with closing clSPARSE library."
<< " Error: " << status << std::endl;
}
//release mem;
clsparseCsrMetaDelete( &A );
clReleaseMemObject ( A.values );
clReleaseMemObject ( A.col_indices );
clReleaseMemObject ( A.row_pointer );
clReleaseMemObject ( x.values );
clReleaseMemObject ( b.values );
std::cout << "Program completed successfully." << std::endl;
return 0;
}