-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfizz_buzz.py
101 lines (76 loc) · 2.59 KB
/
fizz_buzz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import numpy as np
from typing import List
from autograd import Tensor, Parameter, Module
from autograd.optim import SGD
from autograd.function import tanh
"""
print the numbers 1 to 100,
except
if the number is divisible by 3 print "fizz"
if the number is divisible by 5 print "fizz"
if the number is divisible by 15 print "fizz_buzz"
"""
def binary_encode(x: int) -> List[int]:
return [x >> i & 1 for i in range(10)]
def fizz_buzz_encode(x: int) -> List[int]:
if x % 15 == 0:
return [0, 0, 0, 1]
elif x % 5 == 0:
return [0, 0, 1, 0]
elif x % 3 == 0:
return [0, 1, 0, 0]
else:
return [1, 0, 0, 0]
# @矩阵乘法
# (100,3)*(3,1)
x_train = Tensor([binary_encode(x) for x in range(101, 1024)])
y_train = Tensor([fizz_buzz_encode(x) for x in range(101, 1024)])
class FizzBuzzModule(Module):
def __init__(self, num_hidden: int = 50) -> None:
self.w1 = Parameter(10, num_hidden)
self.b1 = Parameter(num_hidden)
self.w2 = Parameter(num_hidden, 4)
self.b2 = Parameter(4)
def predict(self, in_puts: Tensor):
# inputs (batch_size,10)
x1 = inputs @ self.w1 + self.b1 # (batch_size,num_hidden)
x2 = tanh(x1)
x3 = x2 @ self.w2 + self.b2 # (batch_size,4)
return x3
# w = Tensor(np.random.randn(3), requires_grad=True)
# b = Tensor(np.random.randn(), requires_grad=True)
# w = Parameter(3) # tensor(3,),requires_grad =True,random values
# b = Parameter()
optimizer = SGD(lr=0.001)
# learning_rate = 0.001
batch_size = 32
module = FizzBuzzModule()
starts = np.arange(0, x_train.shape[0], batch_size)
for epoch in range(10000):
epoch_loss = 0.0
np.random.shuffle(starts)
for start in starts:
end = start + batch_size
module.zero_grad()
inputs = x_train[start:end]
predicted = module.predict(inputs)
actual = y_train[start:end]
errors = predicted - actual
loss = (errors * errors).sum()
loss.backward()
epoch_loss += loss.data
# module.w -= module.w.grad * learning_rate
# module.b -= module.b.grad * learning_rate
optimizer.step(module)
print(epoch, epoch_loss)
num_correct = 0
for x in range(1, 101):
inputs = Tensor([binary_encode(x)])
predicted = module.predict(inputs)[0]
predicted_idx = np.argmax(predicted.data)
actual_idx = np.argmax(fizz_buzz_encode(x))
labels = [str(x), "fizz", "buzz", "fizz_buzz"]
if predicted_idx == actual_idx:
num_correct += 1
print(x, labels[predicted_idx], labels[actual_idx])
print(num_correct,"/100")