-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathneuralnet_hanwoo.R
59 lines (46 loc) · 1.36 KB
/
neuralnet_hanwoo.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
library(dplyr)
library(hanwoo)
df <- readxl::read_excel("nn_data.xlsx")
# date
df[,2] <- lapply(df[,2], FUN = function(x){
gsub('\\.', '/', x) %>%
lubridate::ymd()
})
# char into num
df[,-c(1,2,3,9)] <- as.numeric(unlist(df[,-c(1,2,3,9)]))
# bind bull info
bull <- hanwoo_bull(df$아빠[1])
for(i in 2:nrow(df)) {
bind <- hanwoo_bull(df$아빠[i])
bull <- rbind(bull,bind)
}
str(bind)
df1 <- cbind(df, bull[,-c(4,13,14,20,21,24,25,27,28)])
df1[,c(20:40)] <- as.numeric(unlist(df1[,c(20:40)]))
df2 <- df1[,-c(1,2,3,9)]
str(df2)
# neuralnet
library(neuralnet)
# normalize ####
normalize <- function(x){
return((x-min(x, na.rm = TRUE))/(max(x, na.rm = TRUE)-min(x, na.rm = TRUE)))
}
df_norm <- as.data.frame(lapply(df2, normalize))
df_norm <- df_norm[complete.cases(df_norm),]
# data separation (train vs. test) ####
set.seed(4)
indexTrain <- sample(1:nrow(df1),round(nrow(df1)*0.7))
df_train <- df_norm[indexTrain,]
df_test <- df_norm[-indexTrain,]
# ANN modeling ####
frm <- as.formula(paste(
paste(names(df_train)[1:5], collapse = "+"),
" ~ ",
paste(names(df_train)[-c(1:5)], collapse= "+"))
)
nn <- neuralnet(frm, data=df_train, hidden = 5)
# plot(nn)
df_result <- compute(nn, df_test[,-c(1:5)])
predicted <- df_result$net.result
predicted
cor(predicted, df_test[,c(1:5)])