-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfig_discrete_cheb.py
68 lines (63 loc) · 2.54 KB
/
fig_discrete_cheb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import numpy as np
from matplotlib import pyplot as plt
fig, axs = plt.subplots(2, 2)
N_array = [37, 38, 39, 40]
e_pc = np.array([5.83032276e-16, 7.88106850e-16, 1.31264360e-14,
6.81247807e-13])
e_sp = np.array([6.79107529e-15, 7.08424027e-15, 1.52208335e-14,
7.23359604e-13])
e_lz = np.array([8.26282134e-16, 8.75621328e-16, 8.78366402e-16,
8.80556299e-16])
axs[0, 0].semilogy(N_array, e_sp, '-^', label='SP')
axs[0, 0].semilogy(N_array, e_lz, '-s', label='LZ')
axs[0, 0].semilogy(N_array, e_pc, '-o', label='PC')
axs[0, 0].set_title(r'$M = 40$')
axs[0, 0].set_xlabel(r'$N$')
axs[0, 0].set_ylabel(r'$e_N$')
axs[0, 0].set_xticks(N_array)
axs[0, 0].legend(prop={'size': 7})
N_array = [56, 60, 64, 68]
e_pc = np.array([1.19606888e-15, 1.92721740e-13, 5.03366337e-10,
3.84167092e-06])
e_sp = np.array([3.81010361e-15, 7.60074466e-14, 2.02231318e-10,
1.57318802e-06])
e_lz = np.array([1.15977130e-15, 1.21238184e-15, 1.36341761e-15,
1.49468349e-15])
axs[0, 1].semilogy(N_array, e_sp, '-^', label='SP')
axs[0, 1].semilogy(N_array, e_lz, '-s', label='LZ')
axs[0, 1].semilogy(N_array, e_pc, '-o', label='PC')
axs[0, 1].set_title(r'$M = 80$')
axs[0, 1].set_xlabel(r'$N$')
axs[0, 1].set_ylabel(r'$e_N$')
axs[0, 1].set_xticks(N_array)
N_array = [82, 89, 96, 103]
e_pc = np.array([1.35320885e-15, 1.52422750e-12, 1.12490901e-08,
2.16713303e-04])
e_sp = np.array([6.44431630e-15, 3.66258846e-12, 2.71222200e-08,
5.23466153e-04])
e_lz = np.array([1.32966300e-15, 1.41362828e-15, 1.55629351e-15,
1.68556574e-15])
axs[1, 0].semilogy(N_array, e_sp, '-^', label='SP')
axs[1, 0].semilogy(N_array, e_lz, '-s', label='LZ')
axs[1, 0].semilogy(N_array, e_pc, '-o', label='PC')
axs[1, 0].set_title(r'$M = 160$')
axs[1, 0].set_xlabel(r'$N$')
axs[1, 0].set_ylabel(r'$e_N$')
axs[1, 0].set_xticks(N_array)
N_array = [82, 89, 96, 103]
e_pc = np.array([1.19348975e-15, 1.33976368e-15, 1.57963123e-15,
1.73577787e-15])
e_sp = np.array([2.92199121e-15, 3.03780940e-15, 3.42385023e-15,
3.63905129e-15])
e_lz = np.array([1.18636824e-15, 1.35263944e-15, 1.65349634e-15,
1.79683860e-15])
axs[1, 1].semilogy(N_array, e_sp, '-^', label='SP')
axs[1, 1].semilogy(N_array, e_lz, '-s', label='LZ')
axs[1, 1].semilogy(N_array, e_pc, '-o', label='PC')
axs[1, 1].set_title(r'$M = 320$')
axs[1, 1].set_xlabel(r'$N$')
axs[1, 1].set_ylabel(r'$e_N$')
axs[1, 1].set_xticks(N_array)
plt.tight_layout()
plt.savefig('Fig2.eps', format='eps')
plt.show()