|
| 1 | +import glob |
| 2 | +from default_params import default_params |
| 3 | +import skimage.io |
| 4 | +import numpy as np |
| 5 | +from PIL import Image, ImageDraw |
| 6 | +import matplotlib.pyplot as plt |
| 7 | +import os.path |
| 8 | +import skimage.io |
| 9 | +import time |
| 10 | +import json |
| 11 | +import multiprocessing |
| 12 | + |
| 13 | +import skimage.io |
| 14 | +from Panos.Pano_rectification import simon_rectification |
| 15 | +from Panos.Pano_project import project_face, stitch_tiles, render_imgs |
| 16 | +import matplotlib.pyplot as plt |
| 17 | + |
| 18 | +from Panos.Pano_visualization import R_heading, draw_all_vp_and_hl_color, draw_all_vp_and_hl_bi, \ |
| 19 | + draw_zenith_on_top_color, draw_zenith_on_top_bi, draw_sphere_zenith, R_roll, R_pitch |
| 20 | +from Panos.Pano_zp_hvp import calculate_consensus_zp |
| 21 | +from Panos.Pano_consensus_vis import draw_consensus_zp_hvps, draw_consensus_rectified_sphere, \ |
| 22 | + draw_center_hvps_rectified_sphere, draw_center_hvps_on_panorams |
| 23 | +import Pano_hvp |
| 24 | +from Panos.Pano_histogram import calculate_histogram |
| 25 | +from Panos.Pano_project import project_facade_for_refine |
| 26 | + |
| 27 | +########## add new random seed |
| 28 | +#np.random.seed(1) |
| 29 | + |
| 30 | +plot_redundant = False |
| 31 | +save_directly = True |
| 32 | + |
| 33 | +root = 'Pano_new' |
| 34 | + |
| 35 | +Country_city = 'New' |
| 36 | + |
| 37 | +new_count = 5 |
| 38 | + |
| 39 | +tmp_count = str(new_count) |
| 40 | + |
| 41 | + |
| 42 | + |
| 43 | +Img_folder = os.path.join(root, Country_city, 'images/') |
| 44 | +inter_Dir = os.path.join(root, 'Pano_hl_z_vp/') |
| 45 | + |
| 46 | + |
| 47 | + |
| 48 | +imageList = glob.glob(Img_folder + '*.jpg') |
| 49 | +imageList.sort() |
| 50 | + |
| 51 | +rendering_output_folder = os.path.join(root, Country_city, 'Rendering') |
| 52 | +if not os.path.exists(rendering_output_folder): |
| 53 | + os.makedirs(rendering_output_folder) |
| 54 | + |
| 55 | + |
| 56 | +#for im_path in ['/home/zhup/Desktop/GSV_Pano_val/Val/images/9wG3a9VOkwTSqnq6zsbdSQ.jpg']: |
| 57 | +# for im_path in imageList[10*new_count:10*(new_count+1)]: |
| 58 | +for im_path in imageList: |
| 59 | + print(im_path) |
| 60 | + im = Image.open(im_path) |
| 61 | + # rendering_img_base = os.path.join(rendering_output_folder, os.path.splitext(os.path.basename(im_path))[0]) |
| 62 | + rendering_img_base = os.path.join(rendering_output_folder, os.path.splitext(os.path.basename(im_path))[0]) |
| 63 | + |
| 64 | + task = 'hahaha/' |
| 65 | + thread_num = 1 |
| 66 | + thread = str(thread_num) + '/' |
| 67 | + tmp_folder = os.path.join(root, Country_city, 'tmp', task, thread) |
| 68 | + |
| 69 | + if not os.path.exists(tmp_folder): |
| 70 | + os.makedirs(tmp_folder) |
| 71 | + removelist = glob.glob(tmp_folder + '*.jpg') |
| 72 | + for i in removelist: |
| 73 | + os.remove(i) |
| 74 | + |
| 75 | + #render_num = 16 |
| 76 | + render_num = 4 |
| 77 | + start = int(-render_num / 2) + 1 |
| 78 | + end = render_num + start |
| 79 | + degree = 360 / render_num |
| 80 | + panorama_img = skimage.io.imread(im_path) |
| 81 | + coordinates_list = [] |
| 82 | + |
| 83 | + |
| 84 | + tilelist = render_imgs(panorama_img, tmp_folder, save_directly) |
| 85 | + if not save_directly: |
| 86 | + tilelist = glob.glob(tmp_folder + '*.jpg') |
| 87 | + tilelist.sort() |
| 88 | + |
| 89 | + hl = [] |
| 90 | + hvps = [] |
| 91 | + hvp_groups = [] |
| 92 | + z = [] |
| 93 | + z_group = [] |
| 94 | + ls = [] |
| 95 | + z_homo = [] |
| 96 | + hvp_homo = [] |
| 97 | + ls_homo = [] |
| 98 | + |
| 99 | + for i in range(len(tilelist)): |
| 100 | + [tmp_hl, tmp_hvps, tmp_hvp_groups, tmp_z, tmp_z_group, tmp_ls, tmp_z_homo, tmp_hvp_homo, tmp_ls_homo, params] = simon_rectification(tilelist[i], i, inter_Dir, root, tmp_count) |
| 101 | + hl.append(tmp_hl) |
| 102 | + hvps.append(tmp_hvps) |
| 103 | + hvp_groups.append(tmp_hvp_groups) |
| 104 | + z.append(tmp_z) |
| 105 | + z_group.append(tmp_z_group) |
| 106 | + ls.append(tmp_ls) |
| 107 | + z_homo.append(tmp_z_homo) |
| 108 | + hvp_homo.append(tmp_hvp_homo) |
| 109 | + ls_homo.append(tmp_ls_homo) |
| 110 | + |
| 111 | + # print('get all the zenith points') |
| 112 | + |
| 113 | + |
| 114 | + removelist = glob.glob(tmp_folder + '*.jpg') |
| 115 | + for i in removelist: |
| 116 | + os.remove(i) |
| 117 | + |
| 118 | + ####################### Get all the zenith points from all the (8) viewpoints |
| 119 | + |
| 120 | + zenith_points = np.array([R_heading(np.pi / 2 * (i - 1)).dot(zenith) for i, zenith in enumerate(z_homo)]) |
| 121 | + points2 = np.array([R_heading(np.pi / 2 * (i - 1)).dot(np.array([0., 0., 1.])) for i in range(len(z_homo))]) |
| 122 | + hv_points = [(R_heading(np.pi / 2 * (i - 1)).dot(hv_p.T)).T for i, hv_p in enumerate(hvp_homo)] |
| 123 | + |
| 124 | + |
| 125 | + if plot_redundant: |
| 126 | + draw_all_vp_and_hl_color(zenith_points, hv_points, im.copy(), root) |
| 127 | + |
| 128 | + draw_all_vp_and_hl_bi(zenith_points, hv_points, im.copy(), root) |
| 129 | + #draw_zenith_on_top_color(zenith_points, root) |
| 130 | + #draw_zenith_on_top_bi(zenith_points, root) |
| 131 | + draw_sphere_zenith(zenith_points, hv_points, root) |
| 132 | + |
| 133 | + |
| 134 | + |
| 135 | + ####################### Calculate the consensus zenith point |
| 136 | + |
| 137 | + [zenith_consensus, best_zenith] = calculate_consensus_zp(zenith_points, method='svd') |
| 138 | + |
| 139 | + # Transform the zenith points back to original homogeneous coordinates |
| 140 | + # zenith_consensus_org = np.array( |
| 141 | + # [R_heading(-np.pi / 6 * (i - 5)).dot(zenith) for i, zenith in enumerate(zenith_consensus)]) |
| 142 | + zenith_consensus_org = np.array([R_heading(-np.pi / 2 * (i - 1)).dot(zenith) for i, zenith in enumerate(zenith_consensus)]) |
| 143 | + |
| 144 | + |
| 145 | + |
| 146 | + result_list = [] |
| 147 | + for i in range(len(zenith_consensus_org)): |
| 148 | + |
| 149 | + #result = Pano_hvp.hvp_from_zenith(ls_homo[i], zenith_consensus_org[i], params) |
| 150 | + |
| 151 | + result = Pano_hvp.get_all_hvps(ls_homo[i], zenith_consensus_org[i], params) |
| 152 | + result_list.append(result) |
| 153 | + |
| 154 | + hvps_consensus_org = [] |
| 155 | + for i in range(len(result_list)): |
| 156 | + # hvps_consensus_org.append(result_list[i]['hvp_homo']) |
| 157 | + hvps_consensus_org.append(result_list[i]) |
| 158 | + |
| 159 | + hvps_consensus_uni = [(R_heading(np.pi / 2 * (i - 1)).dot(hv_p.T)).T for i, hv_p in enumerate(hvps_consensus_org)] |
| 160 | + |
| 161 | + if plot_redundant: |
| 162 | + draw_consensus_zp_hvps(best_zenith, hvps_consensus_uni, im.copy(), root) |
| 163 | + |
| 164 | + |
| 165 | + ####################### Calculate pitch and roll |
| 166 | + pitch = np.arctan(best_zenith[2] / best_zenith[1]) |
| 167 | + roll = - np.arctan(best_zenith[0] / np.sign(best_zenith[1]) * np.hypot(best_zenith[1], best_zenith[2])) |
| 168 | + |
| 169 | + |
| 170 | + hvps_consensus_rectified = [R_roll(-roll).dot(R_pitch(-pitch).dot(vp.T)).T for vp in hvps_consensus_uni] |
| 171 | + |
| 172 | + if plot_redundant: |
| 173 | + draw_consensus_rectified_sphere(hvps_consensus_rectified, root) |
| 174 | + |
| 175 | + |
| 176 | + |
| 177 | + ###################### Calculate horizontal VP histogram |
| 178 | + |
| 179 | + final_hvps_rectified = calculate_histogram(hvps_consensus_rectified, root, plot_redundant) |
| 180 | + |
| 181 | + # final_hvps_rectified = [np.array([1.,0.,0.]), np.array([0.,0.,1.])] |
| 182 | + # pitch = 0 |
| 183 | + # roll = 0 |
| 184 | + |
| 185 | + |
| 186 | + # rrd = np.random.rand() * np.pi |
| 187 | + # final_hvps_rectified = [np.array([np.sin(rrd), 0., np.cos(rrd)]), np.array([np.sin(np.pi/2 + rrd), 0., np.cos(np.pi/2 + rrd)])] |
| 188 | + # pitch = 0 |
| 189 | + # roll = 0 |
| 190 | + |
| 191 | + |
| 192 | + |
| 193 | + |
| 194 | + # Test whether the main vanishing point is near 90 degrees to the second vanishing point |
| 195 | + |
| 196 | + # if len(final_hvps_rectified) == 2: |
| 197 | + # hvp1 = final_hvps_rectified[0] |
| 198 | + # hvp2 = final_hvps_rectified[1] |
| 199 | + # if np.abs(hvp1.dot(hvp2)) > np.sin(np.radians(5)): |
| 200 | + # final_hvps_rectified = [final_hvps_rectified[0]] |
| 201 | + |
| 202 | + if plot_redundant: |
| 203 | + draw_center_hvps_rectified_sphere(np.array(final_hvps_rectified), root) |
| 204 | + draw_center_hvps_on_panorams(best_zenith, np.array(final_hvps_rectified), im.copy(), pitch, roll, root) |
| 205 | + |
| 206 | + |
| 207 | + |
| 208 | + # Draw rectified panorama |
| 209 | + |
| 210 | + # from Panos.Pano_new_pano import create_new_panorama, draw_new_panorama |
| 211 | + # if plot_redundant: |
| 212 | + # new_pano_path = create_new_panorama(im_path, pitch, roll, root) |
| 213 | + # draw_new_panorama(new_pano_path, np.array(final_hvps_rectified), root) |
| 214 | + |
| 215 | + |
| 216 | + |
| 217 | + ###################### Rendering images from panoramas |
| 218 | + |
| 219 | + project_facade_for_refine(np.array(final_hvps_rectified), im.copy(), pitch, roll, im_path, root, tmp_folder, rendering_img_base, tmp_count) |
| 220 | + print(100) |
| 221 | + |
| 222 | + |
0 commit comments