forked from yester31/TensorRT_Examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
common_runtime.py
174 lines (144 loc) · 6.85 KB
/
common_runtime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import ctypes
from typing import Optional, List, Union
import numpy as np
import tensorrt as trt
from cuda import cuda, cudart
def check_cuda_err(err):
if isinstance(err, cuda.CUresult):
if err != cuda.CUresult.CUDA_SUCCESS:
raise RuntimeError("Cuda Error: {}".format(err))
if isinstance(err, cudart.cudaError_t):
if err != cudart.cudaError_t.cudaSuccess:
raise RuntimeError("Cuda Runtime Error: {}".format(err))
else:
raise RuntimeError("Unknown error type: {}".format(err))
def cuda_call(call):
err, res = call[0], call[1:]
check_cuda_err(err)
if len(res) == 1:
res = res[0]
return res
class HostDeviceMem:
"""Pair of host and device memory, where the host memory is wrapped in a numpy array"""
def __init__(self, size: int, dtype: Optional[np.dtype] = None):
dtype = dtype or np.dtype(np.uint8)
nbytes = size * dtype.itemsize
host_mem = cuda_call(cudart.cudaMallocHost(nbytes))
pointer_type = ctypes.POINTER(np.ctypeslib.as_ctypes_type(dtype))
self._host = np.ctypeslib.as_array(ctypes.cast(host_mem, pointer_type), (size,))
self._device = cuda_call(cudart.cudaMalloc(nbytes))
self._nbytes = nbytes
@property
def host(self) -> np.ndarray:
return self._host
@host.setter
def host(self, data: Union[np.ndarray, bytes]):
if isinstance(data, np.ndarray):
if data.size > self.host.size:
raise ValueError(
f"Tried to fit an array of size {data.size} into host memory of size {self.host.size}"
)
np.copyto(self.host[:data.size], data.flat, casting='safe')
else:
assert self.host.dtype == np.uint8
self.host[:self.nbytes] = np.frombuffer(data, dtype=np.uint8)
@property
def device(self) -> int:
return self._device
@property
def nbytes(self) -> int:
return self._nbytes
def __str__(self):
return f"Host:\n{self.host}\nDevice:\n{self.device}\nSize:\n{self.nbytes}\n"
def __repr__(self):
return self.__str__()
def free(self):
cuda_call(cudart.cudaFree(self.device))
cuda_call(cudart.cudaFreeHost(self.host.ctypes.data))
# Allocates all buffers required for an engine, i.e. host/device inputs/outputs.
# If engine uses dynamic shapes, specify a profile to find the maximum input & output size.
def allocate_buffers(engine: trt.ICudaEngine, output_shape:np.ndarray = None, profile_idx: Optional[int] = None):
inputs = []
outputs = []
bindings = []
stream = cuda_call(cudart.cudaStreamCreate())
tensor_names = [engine.get_tensor_name(i) for i in range(engine.num_io_tensors)]
for binding in tensor_names:
# get_tensor_profile_shape returns (min_shape, optimal_shape, max_shape)
# Pick out the max shape to allocate enough memory for the binding.
shape = engine.get_tensor_shape(binding) if profile_idx is None else engine.get_tensor_profile_shape(binding, profile_idx)[-1]
shape_valid = np.all([s >= 0 for s in shape])
if not shape_valid and profile_idx is None:
raise ValueError(f"Binding {binding} has dynamic shape, " +\
"but no profile was specified.")
size = trt.volume(shape)
if profile_idx is not None and binding == 'output':
size = trt.volume(output_shape)
trt_type = engine.get_tensor_dtype(binding)
# Allocate host and device buffers
if trt.nptype(trt_type):
dtype = np.dtype(trt.nptype(trt_type))
bindingMemory = HostDeviceMem(size, dtype)
else: # no numpy support: create a byte array instead (BF16, FP8, INT4)
size = int(size * trt_type.itemsize)
bindingMemory = HostDeviceMem(size)
# Append the device buffer to device bindings.
bindings.append(int(bindingMemory.device))
# Append to the appropriate list.
if engine.get_tensor_mode(binding) == trt.TensorIOMode.INPUT:
inputs.append(bindingMemory)
else:
outputs.append(bindingMemory)
return inputs, outputs, bindings, stream
# Frees the resources allocated in allocate_buffers
def free_buffers(inputs: List[HostDeviceMem], outputs: List[HostDeviceMem], stream: cudart.cudaStream_t):
for mem in inputs + outputs:
mem.free()
cuda_call(cudart.cudaStreamDestroy(stream))
# Wrapper for cudaMemcpy which infers copy size and does error checking
def memcpy_host_to_device(device_ptr: int, host_arr: np.ndarray):
nbytes = host_arr.size * host_arr.itemsize
cuda_call(cudart.cudaMemcpy(device_ptr, host_arr, nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice))
# Wrapper for cudaMemcpy which infers copy size and does error checking
def memcpy_device_to_host(host_arr: np.ndarray, device_ptr: int):
nbytes = host_arr.size * host_arr.itemsize
cuda_call(cudart.cudaMemcpy(host_arr, device_ptr, nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost))
def _do_inference_base(inputs, outputs, stream, execute_async_func):
# Transfer input data to the GPU.
kind = cudart.cudaMemcpyKind.cudaMemcpyHostToDevice
[cuda_call(cudart.cudaMemcpyAsync(inp.device, inp.host, inp.nbytes, kind, stream)) for inp in inputs]
# Run inference.
execute_async_func()
# Transfer predictions back from the GPU.
kind = cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost
[cuda_call(cudart.cudaMemcpyAsync(out.host, out.device, out.nbytes, kind, stream)) for out in outputs]
# Synchronize the stream
cuda_call(cudart.cudaStreamSynchronize(stream))
# Return only the host outputs.
return [out.host for out in outputs]
# This function is generalized for multiple inputs/outputs.
# inputs and outputs are expected to be lists of HostDeviceMem objects.
def do_inference(context, engine, bindings, inputs, outputs, stream):
def execute_async_func():
context.execute_async_v3(stream_handle=stream)
# Setup context tensor address.
num_io = engine.num_io_tensors
for i in range(num_io):
context.set_tensor_address(engine.get_tensor_name(i), bindings[i])
return _do_inference_base(inputs, outputs, stream, execute_async_func)