-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_players.py
323 lines (282 loc) · 12.1 KB
/
parse_players.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import csv
import time
import glob
import os
from get_team_stats import download_oe_data, download_custom_oe_data
from tqdm import tqdm
from multiprocessing import Pool
import multiprocessing.pool as mpp
from itertools import repeat
import gc
from datetime import datetime
from contextlib import closing
def parse_player_data():
with open('./all_data.csv', newline='') as f:
reader = csv.reader(f)
starting_data = list(reader)
starting_data.pop(0) #Remove headers
last_five = [] #Holds 5 players in a team
positions = []
player_count = 0 #Count to 5
current_game_id = "none"
faulty_matches = []
games = {}
print("Preparing teams")
for line in starting_data:
position = line[13]
if position != "team" and line[72] != "" and line[71] != "" and line[93] != "": #Only players and that have complete data
if player_count == 5 and len(positions) == 5 and "top" in positions and "jng" in positions and "mid" in positions and "bot" in positions and "sup" in positions: #Once we have 'accumulated' five players with all the right positions
if current_game_id in games:
if position == "team":
print("fail")
exit()
games[current_game_id] = [games[current_game_id], last_five]
else:
if position == "team":
print("fail1")
exit()
games[current_game_id] = last_five
last_five = [] #Reset values
positions = []
player_count = 0
current_game_id = "none"
#Accumulating a player
if current_game_id == "none":
current_game_id = line[1]
playername = line[14]
position = line[13]
positions.append(position)
last_five.append(playername)
player_count += 1
#Weed out bad teams or entries without 5 players
print("Weeding out bad entries")
for key in list(games):
for team in games[key]:
if len(team) != 5:
if key in games:
del games[key]
continue
tmp = games
lines_in = []
#Convert list to dict
starting_data_dict = {}
for line in tqdm(starting_data, desc="Converting starting data to dictionary"):
starting_data_dict[line[1]+line[14]] = line
for key in tqdm(games, desc="Final part of player parsing"):
#tab once until with open
found_result = False
game_line = []
skip_row = False
for team in games[key]:
game_id = key
for player in team:
found_player = False
line = starting_data_dict[game_id+player]
position = line[13]
if position == "team":
skip_row = True
break
found_player = True
if not found_result:
result = line[25]
found_result = True
game_line.append(result)
#Data we want:
kills = line[26]
deaths = line[27]
assists = line[28]
if line[29] == "0":
kp = "0"
else:
kp = str( (int(kills) + int(assists))/int(line[29]) )
if line[30] == "0":
dth = "0"
else:
dth = str( (int(deaths)/int(line[30]) ))
if line[35] == "":
fb = str(0)
else:
fb = line[35]
if line[100] == "":
gd10 = str(0)
else:
gd10 = line[100]
if line[101] == "":
xpd10 = str(0)
else:
xpd10 = line[101]
if line[102] == "":
csd10 = str(0)
else:
csd10 = line[102]
cspm = line[93]
dpm = line[71]
egpm = line[84]
goldshare = line[85]
wpm = line[76]
wcpm = line[78]
game_line.append([kills, deaths, assists, kp, dth, fb, gd10, xpd10, csd10, cspm, dpm, egpm, goldshare, wpm, wcpm])
if not found_player:
print("Failed to find player")
exit()
if skip_row:
break
if skip_row:
continue
lines_in.append([item for sublist in game_line for item in sublist])
print(len(lines_in))
with open('player_out.csv', 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerows(lines_in)
#pool = Pool(os.cpu_count()-1)
""" for _ in tqdm(pool.imap_unordered(multiprocess_faster, tmp,tl), total=len(tmp), desc="Final part of player parsing"):
pass"""
#t1 = datetime.now()
#with closing( Pool(os.cpu_count()-1,maxtasksperchild=1) ) as p:
# p.imap(multiprocess_faster, zip(games, repeat(games), repeat(starting_data)))
#print(str(datetime.now()-t1))
#for _ in tqdm(pool.starmap(multiprocess_faster, zip(games, repeat(games), repeat(starting_data))), total=len(tmp), desc="Final part of player parsing"):
# pass
#pool.close()
#pool.join()
def player_data_for_prediction(teams, matches, custom_predict, season, region, start, end):
files = []
regions_with_playoffs = []
for match in matches:
if len(match) > 2:
if match[3] not in regions_with_playoffs:
regions_with_playoffs.append(match[3])
dfiles = glob.glob('/root/Downloads/*')
if dfiles:
for f in dfiles:
os.remove(f)
if custom_predict:
if "international" in region:
for reg in ["LCS","LEC","LCK","VCS","LLA","LJL","LCO","TCL","LPL","CBLOL","PCS"]:
files.append(download_custom_oe_data("players", reg, season, start, end))
else:
lck_players_file = download_oe_data("players", "LCK")
lcs_players_file = download_oe_data("players", "LCS")
lec_players_file = download_oe_data("players", "LEC")
#worlds_players_file = download_oe_data("players", "World Championship", "Season")
for region in regions_with_playoffs:
files.append(download_oe_data("players", region, "Playoffs"))
all_player_data = []
print("------------------------")
print(custom_predict)
print(files)
print("nothing" in files)
print("------------------------")
if not custom_predict:
with open(lcs_players_file, newline='') as f:
reader = csv.reader(f)
data = list(reader)
for x in data:
all_player_data.append(x)
f.close()
with open(lec_players_file, newline='') as f1:
reader = csv.reader(f1)
data1 = list(reader)
for y in data1:
all_player_data.append(y)
f1.close()
with open(lck_players_file, newline='') as f2:
reader = csv.reader(f2)
data2 = list(reader)
for z in data2:
all_player_data.append(z)
f2.close()
#with open(worlds_players_file, newline='') as f3:
# reader = csv.reader(f3)
# data3 = list(reader)
# for o in data3:
# all_player_data.append(o)
#f3.close()
else:
for file in files:
if file != "nothing":
with open(file, newline='') as f:
reader = csv.reader(f)
data = list(reader)
for x in data:
all_player_data.append(x)
f.close()
playoff_players = []
if not custom_predict:
for file in files:
if file != "nothing":
with open(file, newline='') as f:
reader = csv.reader(f)
data = list(reader)
f.close()
for player in data:
playoff_players.append(player)
predict_in = []
for team in teams:
pred_row = []
team1 = team[0]
team2 = team[1]
for t in team:
for role in ["Top", "Jungle", "Middle", "ADC", "Support"]:
for line in all_player_data:
if line[1] == t and role == line[2]:
if line[0] in playoff_players:
for player in playoff_players:
if line[0] == player[0]:
kills = str(( float(line[6] ) + float(player[6])) / 2 )
deaths = str(( float(line[7]) + float(player[7])) / 2 )
assists = str(( float(line[8]) + float(player[8])) / 2 )
kp = str((float(line[10].split("%")[0])/100 + float(player[10].split("%")[0])/100)/2)
dth = str((float(line[12].split("%")[0])/100 + float(player[12].split("%")[0])/100)/2)
fb = str((float(line[13].split("%")[0])/100 + float(player[13].split("%")[0])/100)/2)
gd10 = str(( float(line[14]) + float(player[14])) / 2 )
xpd10 = str(( float(line[15]) + float(player[15])) / 2 )
csd10 = str(( float(line[16]) + float(player[16])) / 2 )
cspm = str(( float(line[17]) + float(player[17])) / 2 )
dpm = str(( float(line[19]) + float(player[19])) / 2 )
egpm = str(( float(line[22]) + float(player[22])) / 2 )
goldshare = str((float(line[23].split("%")[0])/100 + float(player[23].split("%")[0])/100)/2)
wpm = str(( float(line[25]) + float(player[25])) / 2 )
wcpm = str(( float(line[27]) + float(player[27])) / 2 )
break
else:
kills = line[6]
deaths = line[7]
assists = line[8]
if line[10] == "":
kp = "0"
else:
kp = str(float(line[10].split("%")[0])/100)
if line[12] == "":
dth = "0"
else:
dth = str(float(line[12].split("%")[0])/100)
fb = str(float(line[13].split("%")[0])/100)
gd10 = line[14]
xpd10 = line[15]
csd10 = line[16]
cspm = line[17]
dpm = line[19]
egpm = line[22]
goldshare = str(float(line[23].split("%")[0])/100)
wpm = line[25]
wcpm = line[27]
pred_row.append([kills,deaths,assists,kp,dth,fb,gd10,xpd10,csd10,cspm,dpm,egpm,goldshare,wpm,wcpm])
break
pred_row.append([team1, team2])
predict_in.append([item for sublist in pred_row for item in sublist])
return predict_in
def double_in(data_in):
final_in = []
for match in data_in:
single_match = []
team1_data = match[0:75]
team2_data = match[75:150]
team1 = match[-2:][0]
team2 = match[-2:][1]
single_match.append(team1_data+team2_data)
single_match.append(team2_data+team1_data)
single_match.append(team1)
single_match.append(team2)
final_in.append(single_match)
return final_in