forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclip_tensor_grad_kernel.cu
73 lines (64 loc) · 2.66 KB
/
clip_tensor_grad_kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/clip_tensor_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
namespace phi {
template <typename T>
__global__ void ClipTensorGradFunctor(const int N,
const T* out_grad,
const T* x,
const T* min,
const T* max,
T* x_grad) {
int idx = blockDim.x * blockIdx.x + threadIdx.x;
for (; idx < N; idx += blockDim.x * gridDim.x) {
x_grad[idx] = (x[idx] > min[idx]) && (x[idx] < max[idx])
? out_grad[idx]
: static_cast<T>(0);
}
}
template <typename T, typename Context>
void ClipTensorGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& min,
const DenseTensor& max,
const DenseTensor& out_grad,
DenseTensor* x_grad) {
const T* x_data = x.data<T>();
auto numel = x.numel();
const T* min_data = min.data<T>();
const T* max_data = max.data<T>();
const T* out_grad_data = out_grad.data<T>();
T* x_grad_data = dev_ctx.template Alloc<T>(x_grad);
auto stream = dev_ctx.stream();
auto config = backends::gpu::GetGpuLaunchConfig1D(dev_ctx, numel);
ClipTensorGradFunctor<T>
<<<config.block_per_grid.x, config.thread_per_block.x, 0, stream>>>(
numel, out_grad_data, x_data, min_data, max_data, x_grad_data);
}
} // namespace phi
PD_REGISTER_KERNEL(clip_tensor_grad,
GPU,
ALL_LAYOUT,
phi::ClipTensorGradKernel,
float,
double,
int,
int64_t,
phi::dtype::float16,
phi::dtype::bfloat16) {}