-
Notifications
You must be signed in to change notification settings - Fork 0
/
DataGenerator.py
59 lines (46 loc) · 1.8 KB
/
DataGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
from tensorflow.keras.utils import Sequence
from tensorflow.keras.utils import to_categorical
class DataGenerator(Sequence):
'Generates data for Keras'
def __init__(self, list_IDs, labels, batch_size=32, dim=(128, 128), n_channels=1,
n_classes=91, shuffle=True):
'Initialization'
self.dim = dim
self.batch_size = batch_size
self.labels = labels
self.list_IDs = list_IDs
self.n_channels = n_channels
self.n_classes = n_classes
self.shuffle = shuffle
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.list_IDs) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Generate data
X, y = self.__data_generation(indexes)
return X, y
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, indexes):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.empty((self.batch_size, *self.dim, self.n_channels))
y = np.empty((self.batch_size, self.n_classes), dtype=int)
# Generate data
import cv2
for i, idx in enumerate(indexes):
# Store sample
ID = self.list_IDs[idx]
# print(ID)
X[i,] = np.array(cv2.imread(ID))[:, :, 0, np.newaxis] / 255
# Store class
y[i] = self.labels[idx]
return X, y