forked from langroid/langroid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtable_chat.py
75 lines (60 loc) · 2.23 KB
/
table_chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
"""
Example showing how to chat with a tabular dataset:
csv, tsv, or any other pandas-readable.
Run like this
python3 examples/data-qa/table_chat.py
Optional args:
* -d or --debug to enable debug mode
* -ns or --nostream to disable streaming
* -nc or --nocache to disable caching
* -m or --model to specify a model name
To run with a local model via ollama, do this:
```
ollama run dolphin-mixtral # best model for this script
python3 examples/data-qa/table_chat.py -m ollama/dolphin-mixtral:latest
```
For more info on running Langroid with local LLM, see here:
https://langroid.github.io/langroid/tutorials/local-llm-setup/
"""
import typer
from rich.prompt import Prompt
from rich import print
from langroid.agent.special.table_chat_agent import TableChatAgent, TableChatAgentConfig
from langroid.agent.task import Task
from langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig
from langroid.utils.configuration import set_global, Settings
app = typer.Typer()
@app.command()
def main(
debug: bool = typer.Option(False, "--debug", "-d", help="debug mode"),
no_stream: bool = typer.Option(False, "--nostream", "-ns", help="no streaming"),
nocache: bool = typer.Option(False, "--nocache", "-nc", help="don't use cache"),
model: str = typer.Option("", "--model", "-m", help="model name"),
) -> None:
set_global(
Settings(
debug=debug,
cache=not nocache,
stream=not no_stream,
)
)
print("[blue]Welcome to the tabular-data chatbot!\n")
path = Prompt.ask(
"[blue]Enter a local path or URL to a tabular dataset (hit enter to use default)\n",
default="https://raw.githubusercontent.com/fivethirtyeight/data/master/airline-safety/airline-safety.csv",
)
agent = TableChatAgent(
config=TableChatAgentConfig(
data=path,
llm=OpenAIGPTConfig(
chat_model=model or OpenAIChatModel.GPT4o,
chat_context_length=16_000, # adjust based on model
timeout=45,
temperature=0.2,
),
)
)
task = Task(agent, interactive=True)
task.run("Can you help me with some questions about a tabular dataset?")
if __name__ == "__main__":
app()