-
Notifications
You must be signed in to change notification settings - Fork 1
/
samp_errmat_multi.m
36 lines (32 loc) · 1.09 KB
/
samp_errmat_multi.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
function [samp_errmat,samp_class]=samp_errmat_multi(samples,doms)
% Expected value given two samples and a boundary. If outcome values
% are not additionally specified, this is the classification accuracy.
% Credits:
% Abhranil Das <[email protected]>
% R Calen Walshe
% Wilson S Geisler
% Center for Perceptual Systems, University of Texas at Austin
% If you use this code, please cite:
% A new method to compute classification error
% https://jov.arvojournals.org/article.aspx?articleid=2750251
% parse inputs
parser=inputParser;
parser.KeepUnmatched=true;
addRequired(parser,'samples',@isstruct);
addRequired(parser,'doms',@iscell);
parse(parser,samples,doms);
n_dists=length(samples);
samp_class=cell(n_dists,1);
samp_errmat=nan(n_dists);
for i_samp=1:n_dists
samp=samples(i_samp).sample;
samp_class_this=nan(size(samp,1),1);
for i_norm=1:n_dists
dom=doms{i_norm};
[~,~,samp_correct_this]=dom(samp',[]);
samp_class_this(samp_correct_this)=i_norm;
samp_errmat(i_samp,i_norm)=nnz(samp_correct_this);
end
samp_class{i_samp}=samp_class_this;
end
end