-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathspec_model.Rd
34 lines (30 loc) · 1.2 KB
/
spec_model.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/medlong.R
\name{spec_model}
\alias{spec_model}
\title{Model specification for G-formula}
\usage{
spec_model(
formula,
subset = NULL,
family = "gaussian",
order,
type = c("exposure", "covariate", "mediator", "outcome", "censor", "survival")
)
}
\arguments{
\item{formula}{Formula for specified models passed to \code{\link[stats]{glm}}.
Must be contained within the input dataframe when initialized.}
\item{subset}{an optional vector specifying a subset of observations to be used
in the fitting process (see \code{\link[stats]{glm}}).}
\item{family}{A description of the error distribution and link function
to be used in the \code{glm} model.}
\item{order}{Numeric, temporal ordering of the Covariates.}
\item{type}{Model type. Exposure model (\code{exposure}), covariate
model (\code{covariate}), mediator model (\code{mediator}), outcome
model (\code{outcome}), mediator model (\code{survival}) or censoring model (\code{censor})}
}
\description{
Add a specified regression model for the exposure. This is used for natural course estimation
of the Monte Carlo g-formula. This must be specified before calling the fit function.
}