diff --git a/requirements.txt b/requirements.txt index faa710c..52067c4 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,3 +1,3 @@ -networkx==1.11 -numpy==1.11.2 -gensim==0.13.3 +numpy>=1.16.2 +networkx>=2.2 +gensim>=3.4.0 diff --git a/src/main.py b/src/main.py index 82ac735..53f12c8 100644 --- a/src/main.py +++ b/src/main.py @@ -83,9 +83,9 @@ def learn_embeddings(walks): ''' Learn embeddings by optimizing the Skipgram objective using SGD. ''' - walks = [map(str, walk) for walk in walks] + walks = [list(map(str, walk)) for walk in walks] model = Word2Vec(walks, size=args.dimensions, window=args.window_size, min_count=0, sg=1, workers=args.workers, iter=args.iter) - model.save_word2vec_format(args.output) + model.wv.save_word2vec_format(args.output) return diff --git a/src/node2vec.py b/src/node2vec.py index 0293411..59d821e 100644 --- a/src/node2vec.py +++ b/src/node2vec.py @@ -1,3 +1,4 @@ +from __future__ import print_function import numpy as np import networkx as nx import random @@ -43,9 +44,9 @@ def simulate_walks(self, num_walks, walk_length): G = self.G walks = [] nodes = list(G.nodes()) - print 'Walk iteration:' + print('Walk iteration:') for walk_iter in range(num_walks): - print str(walk_iter+1), '/', str(num_walks) + print(str(walk_iter+1) + '/' + str(num_walks)) random.shuffle(nodes) for node in nodes: walks.append(self.node2vec_walk(walk_length=walk_length, start_node=node))