|
| 1 | +module Haskell.Law.Ord.Nat where |
| 2 | + |
| 3 | +open import Haskell.Prim |
| 4 | +open import Haskell.Prim.Bool |
| 5 | +open import Haskell.Prim.Eq |
| 6 | +open import Haskell.Prim.Ord |
| 7 | + |
| 8 | +open import Haskell.Law.Bool |
| 9 | +open import Haskell.Law.Eq |
| 10 | +open import Haskell.Law.Equality |
| 11 | +open import Haskell.Law.Ord.Def |
| 12 | +open import Haskell.Law.Nat |
| 13 | + |
| 14 | +instance |
| 15 | + iLawfulOrdNat : IsLawfulOrd Nat |
| 16 | + |
| 17 | + iLawfulOrdNat .comparability zero zero = refl |
| 18 | + iLawfulOrdNat .comparability zero (suc y) = refl |
| 19 | + iLawfulOrdNat .comparability (suc x) zero = refl |
| 20 | + iLawfulOrdNat .comparability (suc x) (suc y) |
| 21 | + rewrite comparability x y |
| 22 | + = refl |
| 23 | + |
| 24 | + iLawfulOrdNat .transitivity zero y zero h₁ = refl |
| 25 | + iLawfulOrdNat .transitivity zero y (suc z) h₁ = refl |
| 26 | + iLawfulOrdNat .transitivity (suc x) (suc y) zero h₁ |
| 27 | + rewrite &&-sym (x <= y) False |
| 28 | + = h₁ |
| 29 | + iLawfulOrdNat .transitivity (suc x) (suc y) (suc z) h₁ = transitivity x y z h₁ |
| 30 | + |
| 31 | + iLawfulOrdNat .reflexivity zero = refl |
| 32 | + iLawfulOrdNat .reflexivity (suc x) = reflexivity x |
| 33 | + |
| 34 | + iLawfulOrdNat .antisymmetry zero zero h₁ = refl |
| 35 | + iLawfulOrdNat .antisymmetry (suc x) (suc y) h₁ = antisymmetry x y h₁ |
| 36 | + |
| 37 | + iLawfulOrdNat .lte2gte zero zero = refl |
| 38 | + iLawfulOrdNat .lte2gte zero (suc y) = refl |
| 39 | + iLawfulOrdNat .lte2gte (suc x) zero = refl |
| 40 | + iLawfulOrdNat .lte2gte (suc x) (suc y) = lte2gte x y |
| 41 | + |
| 42 | + iLawfulOrdNat .lt2LteNeq zero zero = refl |
| 43 | + iLawfulOrdNat .lt2LteNeq zero (suc y) = refl |
| 44 | + iLawfulOrdNat .lt2LteNeq (suc x) zero = refl |
| 45 | + iLawfulOrdNat .lt2LteNeq (suc x) (suc y) = lt2LteNeq x y |
| 46 | + |
| 47 | + iLawfulOrdNat .lt2gt zero y = refl |
| 48 | + iLawfulOrdNat .lt2gt (suc x) y = refl |
| 49 | + |
| 50 | + iLawfulOrdNat .compareLt zero zero = refl |
| 51 | + iLawfulOrdNat .compareLt zero (suc y) = refl |
| 52 | + iLawfulOrdNat .compareLt (suc x) zero = refl |
| 53 | + iLawfulOrdNat .compareLt (suc x) (suc y) = compareLt x y |
| 54 | + |
| 55 | + iLawfulOrdNat .compareGt zero zero = refl |
| 56 | + iLawfulOrdNat .compareGt zero (suc y) = refl |
| 57 | + iLawfulOrdNat .compareGt (suc x) zero = refl |
| 58 | + iLawfulOrdNat .compareGt (suc x) (suc y) = compareGt x y |
| 59 | + |
| 60 | + iLawfulOrdNat .compareEq zero zero = refl |
| 61 | + iLawfulOrdNat .compareEq zero (suc y) = refl |
| 62 | + iLawfulOrdNat .compareEq (suc x) zero = refl |
| 63 | + iLawfulOrdNat .compareEq (suc x) (suc y) = compareEq x y |
| 64 | + |
| 65 | + iLawfulOrdNat .min2if zero zero = refl |
| 66 | + iLawfulOrdNat .min2if zero (suc y) = refl |
| 67 | + iLawfulOrdNat .min2if (suc x) zero = refl |
| 68 | + iLawfulOrdNat .min2if (suc x) (suc y) with x <= y in h₁ |
| 69 | + ... | True |
| 70 | + rewrite (cong (min x y ==_) (sym $ ifTrueEqThen (x <= y) {x} {y} h₁)) |
| 71 | + = min2if x y |
| 72 | + ... | False |
| 73 | + rewrite (cong (min x y ==_) (sym $ ifFalseEqElse (x <= y) {x} {y} h₁)) |
| 74 | + = min2if x y |
| 75 | + |
| 76 | + iLawfulOrdNat .max2if zero zero = refl |
| 77 | + iLawfulOrdNat .max2if zero (suc y) = equality' y y refl |
| 78 | + iLawfulOrdNat .max2if (suc x) zero = equality' x x refl |
| 79 | + iLawfulOrdNat .max2if (suc x) (suc y) with x >= y in h₁ |
| 80 | + ... | True |
| 81 | + rewrite (cong (max x y ==_) (sym $ ifTrueEqThen (x >= y) {x} {y} h₁)) |
| 82 | + = max2if x y |
| 83 | + ... | False |
| 84 | + rewrite (cong (max x y ==_) (sym $ ifFalseEqElse (x >= y) {x} {y} h₁)) |
| 85 | + = max2if x y |
0 commit comments