|
| 1 | +module Haskell.Law.Applicative.FromMonad where |
| 2 | + |
| 3 | +open import Haskell.Prim |
| 4 | + |
| 5 | +open import Haskell.Prim.Applicative |
| 6 | +open import Haskell.Prim.Functor |
| 7 | +open import Haskell.Prim.Monad |
| 8 | + |
| 9 | +open import Haskell.Law.Applicative.Def |
| 10 | +open import Haskell.Law.Monad.Def as Monad |
| 11 | +open import Haskell.Law.Equality |
| 12 | +open import Haskell.Law.Functor |
| 13 | +open import Haskell.Law.Functor.FromMonad |
| 14 | + |
| 15 | +------------------------------------------------------------------------------- |
| 16 | +-- Prove the Applicative laws from the Monad laws |
| 17 | + |
| 18 | +-- |
| 19 | +prop-MonadLaws→IsLawfulApplicative |
| 20 | + : ∀ ⦃ _ : Monad m ⦄ ⦃ _ : PreLawfulMonad m ⦄ |
| 21 | + → IsLawfulApplicative m |
| 22 | +-- |
| 23 | +prop-MonadLaws→IsLawfulApplicative {m} = record |
| 24 | + { super = prop-MonadLaws→IsLawfulFunctor |
| 25 | + ; identity = midentity |
| 26 | + ; composition = mcomposition |
| 27 | + ; homomorphism = mhomomorphism |
| 28 | + ; interchange = minterchange |
| 29 | + ; functor = mfunctor |
| 30 | + } |
| 31 | + where |
| 32 | + midentity : ∀ {a} (ma : m a) → (pure id <*> ma) ≡ ma |
| 33 | + midentity {a} ma |
| 34 | + rewrite def-pure-return (id {a}) |
| 35 | + | def-<*>->>= (return id) ma |
| 36 | + = begin |
| 37 | + return id >>= (λ f → ma >>= (λ x → return (f x))) |
| 38 | + ≡⟨ Monad.leftIdentity _ _ ⟩ |
| 39 | + ma >>= (λ x → return (id x)) |
| 40 | + ≡⟨ Monad.rightIdentity _ ⟩ |
| 41 | + ma |
| 42 | + ∎ |
| 43 | + |
| 44 | + mfunctor : ∀ {a b} (f : a → b) (u : m a) → fmap f u ≡ (pure f <*> u) |
| 45 | + mfunctor f u = begin |
| 46 | + fmap f u |
| 47 | + ≡⟨ Monad.def-fmap->>= _ _ ⟩ |
| 48 | + (do x ← u; return (f x)) |
| 49 | + ≡⟨ sym (Monad.leftIdentity _ _) ⟩ |
| 50 | + (do f' ← return f; x ← u; return (f' x)) |
| 51 | + ≡⟨ cong (λ o → o >>= _) (sym (def-pure-return _)) ⟩ |
| 52 | + (do f' ← pure f; x ← u; return (f' x)) |
| 53 | + ≡⟨ sym (def-<*>->>= _ _) ⟩ |
| 54 | + pure f <*> u |
| 55 | + ∎ |
| 56 | + |
| 57 | + mcomposition |
| 58 | + : ∀ {a b c} (u : m (b → c)) (v : m (a → b)) (w : m a) |
| 59 | + → (pure _∘_ <*> u <*> v <*> w) ≡ (u <*> (v <*> w)) |
| 60 | + mcomposition u v w |
| 61 | + = begin |
| 62 | + pure _∘_ <*> u <*> v <*> w |
| 63 | + ≡⟨ cong (λ o → o <*> u <*> v <*> w) (def-pure-return _∘_) ⟩ |
| 64 | + return _∘_ <*> u <*> v <*> w |
| 65 | + ≡⟨ cong (λ o → o <*> v <*> w) (def-<*>->>= _ _ ) ⟩ |
| 66 | + (do comp ← return _∘_; g ← u; return (comp g)) <*> v <*> w |
| 67 | + ≡⟨ cong (λ o → o <*> v <*> w) (Monad.leftIdentity _ _) ⟩ |
| 68 | + (do g ← u; return (_∘_ g)) <*> v <*> w |
| 69 | + ≡⟨ cong (λ o → o <*> w) (def-<*>->>= _ _ ) ⟩ |
| 70 | + (do g' ← (do g ← u; return (_∘_ g)); f ← v; return (g' f)) <*> w |
| 71 | + ≡⟨ cong (λ o → o <*> w) (sym (Monad.associativity u _ _)) ⟩ |
| 72 | + (do g ← u; g' ← return (_∘_ g); f ← v; return (g' f)) <*> w |
| 73 | + ≡⟨ cong (λ o → o <*> w) (cong-monad u (λ g → Monad.leftIdentity _ _)) ⟩ |
| 74 | + (do g ← u; f ← v; return (g ∘ f)) <*> w |
| 75 | + ≡⟨ def-<*>->>= _ _ ⟩ |
| 76 | + (do gf ← (do g ← u; f ← v; return (g ∘ f)); x ← w; return (gf x)) |
| 77 | + ≡⟨ sym (Monad.associativity u _ _) ⟩ |
| 78 | + (do g ← u; gf ← (do f ← v; return (g ∘ f)); x ← w; return (gf x)) |
| 79 | + ≡⟨ cong-monad u (λ g → sym (Monad.associativity v _ _)) ⟩ |
| 80 | + (do g ← u; do f ← v; gf ← return (g ∘ f); x ← w; return (gf x)) |
| 81 | + ≡⟨ cong-monad u (λ g → cong-monad v (λ f → Monad.leftIdentity _ _)) ⟩ |
| 82 | + (do g ← u; f ← v; x ← w; return (g (f x))) |
| 83 | + ≡⟨ cong-monad u (λ g → cong-monad v λ f → cong-monad w (λ x → sym (Monad.leftIdentity _ _))) ⟩ |
| 84 | + (do g ← u; f ← v; x ← w; y ← return (f x); return (g y)) |
| 85 | + ≡⟨ cong-monad u (λ g → cong-monad v λ x → Monad.associativity _ _ _) ⟩ |
| 86 | + (do g ← u; f ← v; y ← (do x ← w; return (f x)); return (g y)) |
| 87 | + ≡⟨ cong-monad u (λ g → Monad.associativity _ _ _) ⟩ |
| 88 | + (do g ← u; y ← (do f ← v; x ← w; return (f x)); return (g y)) |
| 89 | + ≡⟨ sym (def-<*>->>= _ _) ⟩ |
| 90 | + u <*> (do f ← v; x ← w; return (f x)) |
| 91 | + ≡⟨ cong (λ o → u <*> o) (sym (def-<*>->>= _ _)) ⟩ |
| 92 | + u <*> (v <*> w) |
| 93 | + ∎ |
| 94 | + |
| 95 | + mhomomorphism |
| 96 | + : ∀ {a b} (f : a → b) (x : a) |
| 97 | + → (pure {m} f <*> pure x) ≡ pure (f x) |
| 98 | + mhomomorphism f x = begin |
| 99 | + pure {m} f <*> pure x |
| 100 | + ≡⟨ cong₂ (_<*>_) (def-pure-return f) (def-pure-return x) ⟩ |
| 101 | + return {m} f <*> return x |
| 102 | + ≡⟨ def-<*>->>= _ _ ⟩ |
| 103 | + (do f' ← return f; x' ← return x; return (f' x')) |
| 104 | + ≡⟨ Monad.leftIdentity _ _ ⟩ |
| 105 | + (do x' ← return x; return (f x')) |
| 106 | + ≡⟨ Monad.leftIdentity _ _ ⟩ |
| 107 | + return (f x) |
| 108 | + ≡⟨ sym (def-pure-return _) ⟩ |
| 109 | + pure (f x) |
| 110 | + ∎ |
| 111 | + |
| 112 | + minterchange |
| 113 | + : ∀ {a b} (u : m (a → b)) (y : a) |
| 114 | + → (u <*> pure y) ≡ (pure (_$ y) <*> u) |
| 115 | + minterchange u y = begin |
| 116 | + u <*> pure y |
| 117 | + ≡⟨ cong (u <*>_) (def-pure-return _) ⟩ |
| 118 | + u <*> return y |
| 119 | + ≡⟨ def-<*>->>= _ _ ⟩ |
| 120 | + (do f ← u; y' ← return y; return (f y')) |
| 121 | + ≡⟨ cong-monad u (λ f → Monad.leftIdentity y _) ⟩ |
| 122 | + (do f ← u; return (f y)) |
| 123 | + ≡⟨ sym (Monad.leftIdentity _ _) ⟩ |
| 124 | + (do y'' ← return (_$ y); f ← u; return (y'' f)) |
| 125 | + ≡⟨ sym (def-<*>->>= _ _) ⟩ |
| 126 | + return (_$ y) <*> u |
| 127 | + ≡⟨ sym (cong (_<*> u) (def-pure-return _)) ⟩ |
| 128 | + pure (_$ y) <*> u |
| 129 | + ∎ |
0 commit comments