File tree Expand file tree Collapse file tree 2 files changed +9
-7
lines changed
Categories/NaturalTransformation Expand file tree Collapse file tree 2 files changed +9
-7
lines changed Original file line number Diff line number Diff line change @@ -163,9 +163,9 @@ module _ {B : Category ℓB ℓB'}{C : Category ℓC ℓC'}{D : Category ℓD
163
163
open Functor
164
164
_∘ˡi_ : ∀ (K : Functor B C) → {G H : Functor C D} (β : NatIso G H)
165
165
→ NatIso (G ∘F K) (H ∘F K)
166
- _∘ˡi_ K β .trans = β .trans ∘ˡ K
166
+ _∘ˡi_ K β .trans = β .trans ∘ˡ K
167
167
_∘ˡi_ K β .nIso b = β .nIso (K ⟅ b ⟆)
168
-
168
+
169
169
CAT⋆Assoc : {E : Category ℓE ℓE'}
170
170
(F : Functor B C)(G : Functor C D)(H : Functor D E)
171
171
→ NatIso (H ∘F (G ∘F F)) ((H ∘F G) ∘F F)
Original file line number Diff line number Diff line change @@ -24,19 +24,21 @@ module Eval (𝓒 : Category ℓ ℓ') where
24
24
𝓘 : Functor FreeCat 𝓟
25
25
𝓘 = PseudoYoneda {C = FreeCat}
26
26
27
- -- Semantics in 𝓟o 𝓒 , interpreting fun symbols using Yoneda
27
+ -- Semantics in 𝓟 (𝓒 .ob) , interpreting fun symbols using Yoneda
28
28
module YoSem = Semantics 𝓟 (𝓘 ∘Interp η)
29
29
⟦_⟧yo = YoSem.sem .F-hom
30
-
31
- -- | Evaluate by taking the semantics in 𝓟 𝓒 and
32
- -- | use the Yoneda lemma to extract a morphism in 𝓒.
30
+
31
+ -- | Evaluate by taking the semantics in 𝓟 (𝓒 .ob)
33
32
eval : ∀ {A B} → FreeCat [ A , B ] → _
34
33
eval {A}{B} e = ⟦ e ⟧yo
35
34
35
+ -- Evaluation agrees with the Yoneda embedding, and so is fully faithful
36
36
Yo-YoSem-agree : 𝓘 ≡ YoSem.sem
37
37
Yo-YoSem-agree = YoSem.sem-uniq refl
38
38
39
- -- | Eval agrees with the tautological semantics
39
+ -- If two expressions in the free category are equal when evaluated
40
+ -- in 𝓟 (𝓒 .ob), then they are equal, and so are equal when
41
+ -- evaluated in 𝓒.
40
42
solve : ∀ {A B} → (e₁ e₂ : FreeCat [ A , B ])
41
43
→ eval e₁ ≡ eval e₂
42
44
→ ⟦ e₁ ⟧c ≡ ⟦ e₂ ⟧c
You can’t perform that action at this time.
0 commit comments