-
Notifications
You must be signed in to change notification settings - Fork 26
/
main_oss.py
154 lines (124 loc) · 6.94 KB
/
main_oss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
r""" Matcher testing code for one-shot segmentation """
import argparse
import os
import torch
import torch.nn.functional as F
import numpy as np
import sys
sys.path.append('./')
from matcher.common.logger import Logger, AverageMeter
from matcher.common.vis import Visualizer
from matcher.common.evaluation import Evaluator
from matcher.common import utils
from matcher.data.dataset import FSSDataset
from matcher.Matcher import build_matcher_oss
import random
random.seed(0)
def test(matcher, dataloader, args=None):
r""" Test Matcher """
# Freeze randomness during testing for reproducibility
# Follow HSNet
utils.fix_randseed(0)
average_meter = AverageMeter(dataloader.dataset)
for idx, batch in enumerate(dataloader):
batch = utils.to_cuda(batch)
query_img, query_mask, support_imgs, support_masks = \
batch['query_img'], batch['query_mask'], \
batch['support_imgs'], batch['support_masks']
# 1. Matcher prepare references and target
matcher.set_reference(support_imgs, support_masks)
matcher.set_target(query_img)
# 2. Predict mask of target
pred_mask = matcher.predict()
matcher.clear()
assert pred_mask.size() == batch['query_mask'].size(), \
'pred {} ori {}'.format(pred_mask.size(), batch['query_mask'].size())
# 3. Evaluate prediction
area_inter, area_union = Evaluator.classify_prediction(pred_mask.clone(), batch)
average_meter.update(area_inter, area_union, batch['class_id'], loss=None)
average_meter.write_process(idx, len(dataloader), epoch=-1, write_batch_idx=1)
# Visualize predictions
if Visualizer.visualize:
Visualizer.visualize_prediction_batch(batch['support_imgs'], batch['support_masks'],
batch['query_img'], batch['query_mask'],
pred_mask, batch['class_id'], idx,
area_inter[1].float() / area_union[1].float())
# Write evaluation results
average_meter.write_result('Test', 0)
miou, fb_iou, _ = average_meter.compute_iou()
return miou, fb_iou
if __name__ == '__main__':
# Arguments parsing
parser = argparse.ArgumentParser(description='Matcher Pytorch Implementation for One-shot Segmentation')
# Dataset parameters
parser.add_argument('--datapath', type=str, default='datasets')
parser.add_argument('--benchmark', type=str, default='coco',
choices=['fss', 'coco', 'pascal', 'lvis', 'paco_part', 'pascal_part'])
parser.add_argument('--bsz', type=int, default=1)
parser.add_argument('--nworker', type=int, default=0)
parser.add_argument('--fold', type=int, default=0)
parser.add_argument('--nshot', type=int, default=1)
parser.add_argument('--img-size', type=int, default=518)
parser.add_argument('--use_original_imgsize', action='store_true')
parser.add_argument('--log-root', type=str, default='output/debug')
parser.add_argument('--visualize', type=int, default=0)
# DINOv2 and SAM parameters
parser.add_argument('--dinov2-size', type=str, default="vit_large")
parser.add_argument('--sam-size', type=str, default="vit_h")
parser.add_argument('--dinov2-weights', type=str, default="models/dinov2_vitl14_pretrain.pth")
parser.add_argument('--sam-weights', type=str, default="models/sam_vit_h_4b8939.pth")
parser.add_argument('--use_semantic_sam', action='store_true', help='use semantic-sam')
parser.add_argument('--semantic-sam-weights', type=str, default="models/swint_only_sam_many2many.pth")
parser.add_argument('--points_per_side', type=int, default=64)
parser.add_argument('--pred_iou_thresh', type=float, default=0.88)
parser.add_argument('--sel_stability_score_thresh', type=float, default=0.0)
parser.add_argument('--stability_score_thresh', type=float, default=0.95)
parser.add_argument('--iou_filter', type=float, default=0.0)
parser.add_argument('--box_nms_thresh', type=float, default=1.0)
parser.add_argument('--output_layer', type=int, default=3)
parser.add_argument('--dense_multimask_output', type=int, default=0)
parser.add_argument('--use_dense_mask', type=int, default=0)
parser.add_argument('--multimask_output', type=int, default=0)
# Matcher parameters
parser.add_argument('--num_centers', type=int, default=8, help='K centers for kmeans')
parser.add_argument('--use_box', action='store_true', help='use box as an extra prompt for sam')
parser.add_argument('--use_points_or_centers', action='store_true', help='points:T, center: F')
parser.add_argument('--sample-range', type=str, default="(4,6)", help='sample points number range')
parser.add_argument('--max_sample_iterations', type=int, default=30)
parser.add_argument('--alpha', type=float, default=1.)
parser.add_argument('--beta', type=float, default=0.)
parser.add_argument('--exp', type=float, default=0.)
parser.add_argument('--emd_filter', type=float, default=0.0, help='use emd_filter')
parser.add_argument('--purity_filter', type=float, default=0.0, help='use purity_filter')
parser.add_argument('--coverage_filter', type=float, default=0.0, help='use coverage_filter')
parser.add_argument('--use_score_filter', action='store_true')
parser.add_argument('--deep_score_norm_filter', type=float, default=0.1)
parser.add_argument('--deep_score_filter', type=float, default=0.33)
parser.add_argument('--topk_scores_threshold', type=float, default=0.7)
parser.add_argument('--num_merging_mask', type=int, default=10, help='topk masks for merging')
args = parser.parse_args()
args.sample_range = eval(args.sample_range)
if not os.path.exists(args.log_root):
os.makedirs(args.log_root)
Logger.initialize(args, root=args.log_root)
# Device setup
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
args.device = device
Logger.info('# available GPUs: %d' % torch.cuda.device_count())
# Model initialization
if not args.use_semantic_sam:
matcher = build_matcher_oss(args)
else:
from matcher.Matcher_SemanticSAM import build_matcher_oss as build_matcher_semantic_sam_oss
matcher = build_matcher_semantic_sam_oss(args)
# Helper classes (for testing) initialization
Evaluator.initialize()
Visualizer.initialize(args.visualize)
# Dataset initialization
FSSDataset.initialize(img_size=args.img_size, datapath=args.datapath, use_original_imgsize=args.use_original_imgsize)
dataloader_test = FSSDataset.build_dataloader(args.benchmark, args.bsz, args.nworker, args.fold, 'test', args.nshot)
# Test Matcher
with torch.no_grad():
test_miou, test_fb_iou = test(matcher, dataloader_test, args=args)
Logger.info('Fold %d mIoU: %5.2f \t FB-IoU: %5.2f' % (args.fold, test_miou.item(), test_fb_iou.item()))
Logger.info('==================== Finished Testing ====================')