diff --git a/test/integration/api/test_main_api.py b/test/integration/api/test_main_api.py index 4873bb5be3..a8ea407373 100644 --- a/test/integration/api/test_main_api.py +++ b/test/integration/api/test_main_api.py @@ -157,7 +157,12 @@ def data_with_binary_features_and_categorical_target(): ]) def test_api_predict_correct(task_type, metric_name): train_data, test_data, _ = get_dataset(task_type) - model = Fedot(problem=task_type, metric=[metric_name], **TESTS_MAIN_API_DEFAULT_PARAMS) + changed_api_params = { + **TESTS_MAIN_API_DEFAULT_PARAMS, + 'timeout': 1, + 'preset': 'fast_train' + } + model = Fedot(problem=task_type, metric=metric_name, **changed_api_params) fedot_model = model.fit(features=train_data) prediction = model.predict(features=test_data) metric = model.get_metrics(metric_names=metric_name, rounding_order=5) diff --git a/test/integration/real_applications/test_examples.py b/test/integration/real_applications/test_examples.py index dfb0a7d75e..7e25ef20ea 100644 --- a/test/integration/real_applications/test_examples.py +++ b/test/integration/real_applications/test_examples.py @@ -84,7 +84,7 @@ def test_api_example(): prediction = run_classification_example(timeout=1, with_tuning=with_tuning) assert prediction is not None - forecast = run_ts_forecasting_example(dataset='australia', timeout=2, with_tuning=with_tuning) + forecast = run_ts_forecasting_example(dataset='australia', timeout=1, with_tuning=with_tuning) assert forecast is not None pareto = run_classification_multiobj_example(timeout=1, with_tuning=with_tuning)