-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathAlphabet_Recognizer_NN.py
175 lines (129 loc) · 3.81 KB
/
Alphabet_Recognizer_NN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import numpy as np
import matplotlib.pyplot as plt
def softmax(z):
z -= np.max(z)
sm = (np.exp(z).T / np.sum(np.exp(z),axis=1))
return sm
def layers(X, Y):
"""
:param X:
:param Y:
:return:
"""
n_x = X.shape[0]
n_y = Y.shape[0]
return n_x, n_y
def initialize_nn(n_x, n_h, n_y):
"""
:param n_x:
:param n_h:
:param n_y:
:return:
"""
np.random.seed(2)
W1 = np.random.randn(n_h, n_x) * 0.01
b1 = np.random.rand(n_h, 1)
W2 = np.random.rand(n_y, n_h)
b2 = np.random.rand(n_y, 1)
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
def forward_prop(X, parameters):
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
Z1 = np.dot(W1, X) + b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2, A1) + b2
A2 = softmax(Z2.T)
cache = {"Z1": Z1,
"A1": A1,
"Z2": Z2,
"A2": A2}
return A2, cache
def compute_cost(A2, Y, parameters):
m = Y.shape[1]
W1 = parameters['W1']
W2 = parameters['W2']
logprobs = np.multiply(np.log(A2), Y)
cost = - np.sum(logprobs) / m
cost = np.squeeze(cost)
return cost
def back_prop(parameters, cache, X, Y):
m = Y.shape[1]
W1 = parameters['W1']
W2 = parameters['W2']
A1 = cache['A1']
A2 = cache['A2']
dZ2 = A2 - Y
dW2 = (1 / m) * np.dot(dZ2, A1.T)
db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.square(A1))
dW1 = (1 / m) * np.dot(dZ1, X.T)
db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2}
return grads
def update_params(parameters, grads, alpha):
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
dW1 = grads['dW1']
db1 = grads['db1']
dW2 = grads['dW2']
db2 = grads['db2']
W1 = W1 - alpha * dW1
b1 = b1 - alpha * db1
W2 = W2 - alpha * dW2
b2 = b2 - alpha * db2
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
def model_nn(X, Y,Y_real,test_x,test_y, n_h, num_iters, alpha, print_cost):
np.random.seed(3)
n_x,n_y = layers(X, Y)
parameters = initialize_nn(n_x, n_h, n_y)
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
costs = []
for i in range(0, num_iters):
A2, cache = forward_prop(X, parameters)
cost = compute_cost(A2, Y, parameters)
grads = back_prop(parameters, cache, X, Y)
if (i > 1500):
alpha1 = 0.95*alpha
parameters = update_params(parameters, grads, alpha1)
else:
parameters = update_params(parameters, grads, alpha)
if i % 100 == 0:
costs.append(cost)
if print_cost and i % 100 == 0:
print("Cost after iteration for %i: %f" % (i, cost))
predictions = predict_nn(parameters, X)
print("Train accuracy: {} %", sum(predictions == Y_real) / (float(len(Y_real))) * 100)
predictions=predict_nn(parameters,test_x)
print("Train accuracy: {} %", sum(predictions == test_y) / (float(len(test_y))) * 100)
#plt.plot(costs)
#plt.ylabel('cost')
#plt.xlabel('iterations (per hundreds)')
#plt.title("Learning rate =" + str(alpha))
#plt.show()
return parameters
def predict_nn(parameters, X):
A2, cache = forward_prop(X, parameters)
predictions = np.argmax(A2, axis=0)
return predictions
def predict_nn_for_cv(parameters, X):
A2, cache = forward_prop(X, parameters)
predictions = np.argmax(A2, axis=0)
return int(predictions[0])