-
Notifications
You must be signed in to change notification settings - Fork 1
/
Sgritta2017.h
706 lines (621 loc) · 17 KB
/
Sgritta2017.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
/*
* stdp_connection.h
*
* This file is part of NEST.
*
* Copyright (C) 2004 The NEST Initiative
*
* NEST is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* NEST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with NEST. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef SGRITTA2017_H
#define SGRITTA2017_H
// Hard-coded frequency limits
#define F_MIN 0.9
#define F_MAX 10.1
/*
Vasco Orza and Alberto Antonietti
Cerebellar MF-GrC Plasticity with STDP + Frequency dependency
*/
// C++ includes:
#include <cmath>
#include <algorithm>
#include <new>
#include <vector>
#include <fstream>
// Includes from nestkernel:
#include "common_synapse_properties.h"
#include "connection.h"
#include "connector_model.h"
#include "event.h"
// Includes from sli:
#include "dictdatum.h"
#include "dictutils.h"
std::ofstream amp_;
std::ofstream window_;
std::ofstream peak_;
std::ofstream stdp_changes_;
namespace mynest
{
// connections are templates of target identifier type (used for pointer /
// target index addressing) derived from generic connection template
template < typename targetidentifierT >
class Sgritta2017 : public nest::Connection< targetidentifierT >
{
public:
typedef nest::CommonSynapseProperties CommonPropertiesType;
typedef nest::Connection< targetidentifierT > ConnectionBase;
/**
* Default Constructor.
* Sets default values for all parameters. Needed by GenericConnectorModel.
*/
Sgritta2017();
/**
* Copy constructor.
* Needs to be defined properly in order for GenericConnector to work.
*/
Sgritta2017( const Sgritta2017& );
// Explicitly declare all methods inherited from the dependent base
// ConnectionBase. This avoids explicit name prefixes in all places these
// functions are used. Since ConnectionBase depends on the template parameter,
// they are not automatically found in the base class.
using ConnectionBase::get_delay_steps;
using ConnectionBase::get_delay;
using ConnectionBase::get_rport;
using ConnectionBase::get_target;
/**
* Get all properties of this connection and put them into a dictionary.
*/
void get_status( DictionaryDatum& d ) const;
/**
* Set properties of this connection from the values given in dictionary.
*/
void set_status( const DictionaryDatum& d, nest::ConnectorModel& cm );
/**
* Send an event to the receiver of this connection.
* \param e The event to send
* \param t_lastspike Point in time of last spike sent.
* \param cp common properties of all synapses (empty).
*/
void send( nest::Event& e,
nest::thread t,
const nest::CommonSynapseProperties& cp );
class ConnTestDummyNode : public nest::ConnTestDummyNodeBase
{
public:
// Ensure proper overriding of overloaded virtual functions.
// Return values from functions are ignored.
using nest::ConnTestDummyNodeBase::handles_test_event;
nest::port
handles_test_event( nest::SpikeEvent&, nest::rport )
{
return nest::invalid_port_;
}
};
void
check_connection( nest::Node& s,
nest::Node& t,
nest::rport receptor_type,
const CommonPropertiesType& )
{
ConnTestDummyNode dummy_target;
ConnectionBase::check_connection_( dummy_target, s, t, receptor_type );
t.register_stdp_connection( t_lastspike_ - get_delay(), get_delay() );
}
void
set_weight( double w )
{
weight_ = w;
}
private:
double
CalculateMultiplier( double Fpeak )
{
double multiplier;
if ( Fpeak < F_MIN || Fpeak > F_MAX )
{
multiplier = 0;
}
if ( Fpeak <= 6 && Fpeak >= 1 )
{
multiplier = 0.308*Fpeak - 0.848;
}
if ( Fpeak > 6 && Fpeak <= 10 )
{
multiplier = -0.115 * Fpeak + 1.69;
}
return multiplier;
}
double
FindPeaks( double perc )
{
std::vector<double> DummyAmp;
std::vector<double>::iterator found;
std::vector<double>::iterator max;
double m;
int index_m;
int i = 0;
while ( Frequencies[ i ] < F_MAX )
{
DummyAmp.push_back( Amplitudes[ i ] );
i++;
}
max = std::max_element( DummyAmp.begin(), DummyAmp.end() );
m = *max;
found = std::find( DummyAmp.begin(), DummyAmp.end(), m );
index_m = distance( DummyAmp.begin(), found );
return Frequencies[ index_m ];
}
void
four1( void )
{
unsigned long n = 0, mmax = 0, m = 0, j = 0, istep = 0, i = 0;
double wtemp = 0.0, wr = 0.0, wpr = 0.0, wpi = 0.0, wi = 0.0, theta = 0.0;
double tempr = 0.0, tempi = 0.0;
// reverse-binary reindexing
n = W_int << 1;
j = 1;
for ( i = 1; i < n; i += 2 )
{
if ( j > i )
{
std::swap( Doppio[ j-1 ], Doppio[ i-1 ] );
std::swap( Doppio[ j ], Doppio[ i ] );
}
m = W_int;
while ( m >= 2 && j > m )
{
j -= m;
m >>= 1;
}
j += m;
}
// here begins the Danielson-Lanczos section
mmax=2;
while( n/2 > mmax )
{
istep = mmax << 1;
theta = -( 2 * M_PI / mmax );
wtemp = sin( 0.5 * theta );
wpr = -2.0 * wtemp * wtemp;
wpi = sin( theta );
wr = 1.0;
wi = 0.0;
for ( m = 1; m < mmax; m += 2 )
{
for ( i = m; i <= n; i += istep)
{
j = i + mmax;
tempr = wr * Doppio[ j-1 ] - wi * Doppio[ j ];
tempi = wr * Doppio[ j ] + wi * Doppio[ j-1 ];
Doppio[ j-1 ] = Doppio[ i-1 ] - tempr;
Doppio[ j ] = Doppio[ i ] - tempi;
Doppio[ i-1 ] += tempr;
Doppio[ i ] += tempi;
}
wtemp = wr;
wr += wr * wpr - wi * wpi;
wi += wi * wpr + wtemp * wpi;
}
mmax = istep;
}
}
void
CalculateA( void )
{
double sq_sum;
double sq_root;
int j = 0;
for ( int i = 0; i < W_int; i++ )
{
Amplitudes[ i ] = 0;
}
for ( int i = 0; i < W_int * 2; i = i + 2 )
{
sq_sum = std::pow( Doppio[ i ], 2) + std::pow(Doppio[ i + 1 ], 2 );
sq_root = std::sqrt(sq_sum);
Amplitudes[ j ] = sq_root;
j++;
}
for ( int i = 0; i < W_int; i++ )
{
if (Frequencies[ i ] < F_MIN || Frequencies[ i ] > F_MAX)
{
Amplitudes[ i ] = 0;
}
if ( p_ != 0.0 )
{
amp_ << Amplitudes [ i ] << " ";
}
}
if ( p_ != 0.0 )
{
amp_ << std::endl;
}
}
void
InstantFreq( double t2, double t1, int P, double A )
{
double b = resolution / 1000.0;
double dT = (t2 - t1) / 1000.0;
double div = resolution / 1000.0;
int len = (int)( dT/div + 0.5 );
if ( P + 1 < 0 || P + len >= W_int )
{
std::cout << " CHECK7 FAIL " << std::endl;
}
for ( int i = P + 1; i <= P + len; i++ )
{
Window[ i ] = A * std::exp( -1.0 * b / 0.25 );
b = b + div;
}
Window[ P+len ] = Window[ P+len ] + 4.0;
if (p_ != 0 )
{
for (int i = 0; i < W_int; i++ )
{
window_ << Window[ i ] << " ";
}
window_ << std::endl;
}
}
void
MoveWindow( double dT, double posOld, int flagM )
{
if ( flagM == 1 || posOld >= W_int )
{
posOld = W_int - 1;
}
int step = dT - ( ( W_int - 1 ) - posOld );
if (step<0 || posOld>=W_int)
{
std::cout << " CHECK6 FAIL " << " " << step << " " << posOld <<std::endl;
}
for ( int i = step; i <= posOld; i++ )
{
Window[ i - step ] = Window[ i ];
}
}
void
Inizializza(void)
{
double b = 0.0;
double stepFreq;
stepFreq = ( 1000.0 / resolution ) / W_int;
for ( int i = 0; i < W_int; i++ )
{
Window.push_back( 0.0 );
Amplitudes.push_back( 0.0 );
Frequencies.push_back( b );
b = b + stepFreq;
}
}
void
Duplica( int flag )
{
int j = 0;
if ( flag == 0 )
{
for ( int i = 0; i < W_int * 2; i++ )
{
if ( i % 2 == 0 )
{
Doppio.push_back( Window[ j ] );
j++;
}
else if ( i % 2 != 0 )
{
Doppio.push_back(0.0);
}
}
}
if ( flag != 0 )
{
for (int i = 0; i < W_int * 2; i++ )
{
if ( i % 2 == 0 )
{
Doppio[ i ] = Window[ j ];
j++;
}
else if ( i % 2 != 0 )
{
Doppio[ i ] = 0.0;
}
}
}
}
double
calculate_k_( double dt )
{
double k = 2.0 * std::pow( sin( 2 * M_PI * dt * 0.01 ), 5 ) *
std::exp( -1 * std::abs( 0.0587701241739 *dt ) );
return k;
}
double
facilitate_( double w, double kplus, double scaleFactor, double Peak )
{
double norm_w = 0.0;
if ( Peak >= 1.0 && Peak <= 2.75 ) // Only LTD if Peak between 1 and 2.75 Hz
{
if ( w < 0 )
{
norm_w = -1*( std::abs( w ) - std::abs( w * alpha_ * kplus * scaleFactor ) );
}
else if ( w >= 0 )
{
norm_w = w - std::abs( w * alpha_ * kplus * scaleFactor );
}
}
else if ( Peak > 2.75 ) // Both LTP and LTD
{
if ( w < 0 )
{
norm_w = -1*( std::abs( w ) + ( w * alpha_ * kplus * scaleFactor ) );
}
else if ( w >= 0 )
{
norm_w = w + ( w * alpha_ * kplus * scaleFactor );
}
}
else
{
return w;
}
return norm_w;
}
// data members of each connection
double weight_;
double tau_plus_;
double lambda_;
double alpha_;
long mu_plus_; // Size of the moving windows (in seconds)
double mu_minus_;
double Wmax_;
double Kplus_;
double Wmin_;
int p;
double dtp_;
double dtn_;
double t_old;
double alpha = 0;
int flag = 0;
int flagMove = 0;
int move;
int posF;
int pos;
int pos_old = 0;
double deltaT;
int W;
int W_int;
double resolution = nest::Time::get_resolution().get_ms();
std::vector<double> Window;
std::vector<double> Frequencies;
std::vector<double> Doppio;
std::vector<double> Amplitudes;
double t_lastspike_;
double p_; // flag, set to 1.0 only for debugging
};
/**
* Send an event to the receiver of this connection.
* \param e The event to send
* \param t The thread on which this connection is stored.
* \param t_lastspike_ Time point of last spike emitted
* \param cp Common properties object, containing the stdp parameters.
*/
template < typename targetidentifierT >
inline void
Sgritta2017< targetidentifierT >::send( nest::Event& e,
nest::thread t,
const nest::CommonSynapseProperties& )
{
double t_spike = e.get_stamp().get_ms();
// use accessor functions (inherited from Connection< >) to obtain delay and
// target
nest::Node* target = get_target( t );
double dendritic_delay = get_delay();
// get spike history in relevant range (t1, t2 ] from post-synaptic neuron
std::deque< nest::histentry >::iterator start;
std::deque< nest::histentry >::iterator finish;
target->get_history(
t_lastspike_ - dendritic_delay, t_spike - dendritic_delay, &start, &finish );
W = mu_plus_;
W_int = (int) ( ( W * 1000 ) / resolution + 0.5 );
posF = (int) ( t_spike / resolution + 0.5 );
deltaT = (int)( ( t_spike - t_old ) / resolution + 0.5 );
// After the first pre-synaptic spike
if (flag == 0)
{
Inizializza();
posF = posF % W_int;
if (posF < 0 || posF >= W_int )
{
std::cout << " CHECK1 FAIL " << std::endl;
}
Window[ posF ] = 4.0;
flag = 1;
}
// The instantaneous frequency buffer is being filled
else if ( pos_old + deltaT < W_int && flag != 0 )
{
if ( pos_old < 0 || pos_old >= W_int )
{
std::cout << " CHECK4 FAIL " << std::endl;
}
InstantFreq( t_spike, t_old, pos_old, Window[ pos_old ] );
}
else if ( pos_old + deltaT >= W_int && flag != 0 && deltaT < W_int )
{
MoveWindow(deltaT, pos_old, flagMove);
if ( flagMove != 0 )
{
pos = W_int - 1 - deltaT;
if ( pos < 0 || pos >= W_int )
{
std::cout << " CHECK2 FAIL " << std::endl;
}
InstantFreq( t_spike, t_old, pos, Window[ pos ] );
Duplica( flagMove );
four1();
CalculateA();
if ( t == 0 && p_ != 0.0 )
{
peak_ << FindPeaks( mu_minus_ ) << "\t";
}
}
else if ( flagMove == 0 )
{
p = deltaT - ( ( W_int - 1 ) - pos_old );
pos = pos_old - p;
if ( pos < 0 || pos >= W_int )
{
std::cout << " CHECK3 FAIL " << pos << std::endl;
}
InstantFreq( t_spike, t_old, pos, Window[ pos ]);
Duplica( flagMove );
four1();
CalculateA();
flagMove = 1;
if ( t == 0 && p_ != 0.0 )
{
peak_ << FindPeaks( mu_minus_ ) << "\t";
}
}
}
t_old = t_spike;
pos_old = posF;
while ( start != finish )
{
// Delta_t > 0 - causal spikes (pre-synaptic spike -> post-synaptic spike)
double peak = FindPeaks( mu_minus_ );
dtp_ = ( start ->t_ ) - t_lastspike_; // DeltaT = T_post - T_pre
Kplus_ = calculate_k_( dtp_ );
alpha = CalculateMultiplier( peak );
double weight_pre = weight_;
weight_ = facilitate_( weight_, Kplus_, alpha, peak );
if ( p_ != 0.0 )
{
stdp_changes_ << ( start ->t_ ) << " " << dtp_ << " " << Kplus_ << " " << alpha << " " << peak << " " << weight_-weight_pre << std::endl;
}
// Delta_t < 0 anti-causal spikes (post-synaptic spike -> pre-synaptic spike)
dtn_ = ( start ->t_ ) - t_spike; // DeltaT = T_post - T_pre
Kplus_ = calculate_k_( dtn_ );
weight_pre = weight_;
weight_ = facilitate_( weight_, Kplus_, alpha, peak );
if ( p_ != 0.0 )
{
stdp_changes_ << ( start ->t_ ) << " " << dtn_ << " " << Kplus_ << " " << alpha << " " << peak << " " << weight_-weight_pre << std::endl;
}
++start;
}
e.set_receiver( *target );
if ( weight_ < Wmin_ )
{
weight_ = Wmin_;
}
if ( weight_ > Wmax_ )
{
weight_ = Wmax_;
}
e.set_weight( weight_ );
// use accessor functions (inherited from Connection< >) to obtain delay in
// steps and rport
e.set_delay_steps( get_delay_steps() );
e.set_rport( get_rport() );
e();
t_lastspike_ = t_spike;
}
template < typename targetidentifierT >
Sgritta2017< targetidentifierT >::Sgritta2017()
: ConnectionBase()
, weight_( 1.0 )
, tau_plus_( 20.0 )
, lambda_( 0.01 )
, alpha_( 1.0 )
, mu_plus_( 1 )
, mu_minus_( 1.0 )
, Wmax_( 100.0 )
, Kplus_( 0.0 )
, Wmin_(-100.0)
, t_lastspike_( 0.0 )
, p_( 0.0 )
{
}
template < typename targetidentifierT >
Sgritta2017< targetidentifierT >::Sgritta2017(
const Sgritta2017< targetidentifierT >& rhs )
: ConnectionBase( rhs )
, weight_( rhs.weight_ )
, tau_plus_( rhs.tau_plus_ )
, lambda_( rhs.lambda_ )
, alpha_( rhs.alpha_ )
, mu_plus_( rhs.mu_plus_ )
, mu_minus_( rhs.mu_minus_ )
, Wmax_( rhs.Wmax_ )
, Kplus_( rhs.Kplus_ )
, Wmin_( rhs.Wmin_ )
, t_lastspike_( rhs.t_lastspike_ )
, p_( rhs.p_ )
{
}
template < typename targetidentifierT >
void
Sgritta2017< targetidentifierT >::get_status( DictionaryDatum& d ) const
{
ConnectionBase::get_status( d );
def< double >( d, nest::names::weight, weight_ );
def< double >( d, nest::names::tau_plus, tau_plus_ );
def< double >( d, nest::names::lambda, lambda_ );
def< double >( d, nest::names::alpha, alpha_ );
def< long >( d, nest::names::mu_plus, mu_plus_ );
def< double >( d, nest::names::mu_minus, mu_minus_ );
def< double >( d, nest::names::Wmax, Wmax_ );
def< double >( d, nest::names::Wmin, Wmin_ );
def< long >( d, nest::names::size_of, sizeof( *this ) );
def< double >( d, nest::names::P, p_ );
}
template < typename targetidentifierT >
void
Sgritta2017< targetidentifierT >::set_status( const DictionaryDatum& d,
nest::ConnectorModel& cm )
{
ConnectionBase::set_status( d, cm );
updateValue< double >( d, nest::names::weight, weight_ );
updateValue< double >( d, nest::names::tau_plus, tau_plus_ );
updateValue< double >( d, nest::names::lambda, lambda_ );
updateValue< double >( d, nest::names::alpha, alpha_ );
updateValue< long >( d, nest::names::mu_plus, mu_plus_ );
updateValue< double >( d, nest::names::mu_minus, mu_minus_ );
updateValue< double >( d, nest::names::Wmax, Wmax_ );
updateValue< double >( d, nest::names::Wmin, Wmin_ );
updateValue< double >( d, nest::names::P, p_ );
// only one synapse can write to file
if ( p_ != 0.0 )
{
std::cout << "WARNING! Sgritta synapse is writing to a file! " << std::endl;
window_.open( "window.dat" );
amp_.open( "amp.dat" );
peak_.open( "peak.dat" );
stdp_changes_.open( "stdp_changes.dat" );
}
// check if weight_ and Wmax_ has the same sign
if ( not( ( ( weight_ >= 0 ) - ( weight_ < 0 ) )
== ( ( Wmax_ >= 0 ) - ( Wmax_ < 0 ) ) ) )
{
throw nest::BadProperty( "Weight and Wmax must have the same sign." );
}
}
} // of namespace nest
#endif // of #ifndef SGRITTA2017_