-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathcamera_pred.py
95 lines (91 loc) · 3.65 KB
/
camera_pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import cv2
import math
import numpy as np
import time
from collections import deque
import digit_recognizer as dr
import LRmodel
cap = cv2.VideoCapture(0)
# collection of points to draw
center_points = deque()
# green colour pointer to be detected
lowergreen = np.array([50, 100, 50])
uppergreen = np.array([90, 255, 255])
# the black board for the models
board = np.zeros((230, 230), dtype='uint8')
while(cap.isOpened()):
ret, frame = cap.read()
# flipping the frame
frame = cv2.flip(frame, 1)
# applying gaussian blur
frame = cv2.GaussianBlur(frame, (5, 5), 0)
# drawing the rectangle for the board
cv2.rectangle(frame, (400, 50), (600, 250), (100, 100, 255), 2)
roi = frame[50:250, 400:600, :]
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
# detecting colours in the range
roi_range = cv2.inRange(hsv_roi, lowergreen, uppergreen)
# applying contours on the detected colours
image, contours, hierarchy = cv2.findContours(
roi_range.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# the text to be displayed on the screen
predict1_text = "Logistic Regression : "
predict2_text = "CNN Model : "
# flags to check when drawing started and when stopped
drawing_started = False
drawing_stopped = False
if(len(contours) > 0):
drawing_started = True
# getting max contours from the contours
max_contours = max(contours, key=cv2.contourArea)
M = cv2.moments(max_contours)
# to avoid divided by zero error
try:
center = (int(M['m10'] / M['m00']), int(M['m01'] / M['m00']))
except:
continue
# center obtained is appended to the deque
center_points.appendleft(center)
else:
drawing_stopped = False
for i in range(1, len(center_points)):
if math.sqrt((center_points[i-1][0] - center_points[i][0])**2 +
(center_points[i-1][1] - center_points[i][1])**2) < 50:
cv2.line(roi, center_points[i-1], center_points[i], (200, 200, 200), 5, cv2.LINE_AA)
cv2.line(board, (center_points[i-1][0]+15, center_points[i-1][1]+15),
(center_points[i][0]+15, center_points[i][1]+15), 255, 7, cv2.LINE_AA)
# the board is resized for the prediction
input = cv2.resize(board, (28, 28))
# applying morphological transformation on the drawn digit
if np.max(board) != 0 and drawing_started == True and drawing_stopped == True:
kernel = (5, 5)
input = cv2.morphologyEx(input, cv2.MORPH_OPEN, kernel)
board = cv2.morphologyEx(board, cv2.MORPH_OPEN, kernel)
drawing_started = False
drawing_stopped = False
# predicting the digit using LR and CNN
if np.max(board) != 0:
LR_input = input.reshape(1, 784)
test_x = input.reshape((1, 28, 28, 1))
prediction1 = np.argmax(LRmodel.predict(
LR_input, dr.LR_params.item().get('weights'), dr.LR_params.item().get('base')))
prediction2 = np.argmax(dr.model_conv.predict(test_x))
predict1_text += str(prediction1)
predict2_text += str(prediction2)
# displaying the text on the screen
cv2.putText(frame, predict1_text,
(5, 420), cv2.FONT_HERSHEY_DUPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(frame, predict2_text,
(5, 460), cv2.FONT_HERSHEY_DUPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
cv2.imshow('input', input)
cv2.imshow('frame', frame)
cv2.imshow('board', board)
k = cv2.waitKey(1) & 0xFF
if k == ord('q'):
break
# clearing the board
elif k == ord('c'):
board.fill(0)
center_points.clear()
cap.release()
cv2.destroyAllWindows()