-
Notifications
You must be signed in to change notification settings - Fork 9
Description
(molo) andrew@andrew:~/MoLo-master$ python runs/run.py --cfg configs/projects/MoLo/ucf101/MoLo_UCF101_1shot_v1.yaml
/home/andrew/anaconda3/envs/molo/lib/python3.6/site-packages/aliyunsdkcore/auth/algorithm/sha_hmac256.py:20: CryptographyDeprecationWarning: Python 3.6 is no longer supported by the Python core team. Therefore, support for it is deprecated in cryptography and will be removed in a future release.
from cryptography.hazmat.backends import default_backend
/home/andrew/MoLo-master/models/base/few_shot.py:56: UserWarning: PyTorch version 1.7.1 or higher is recommended
warnings.warn("PyTorch version 1.7.1 or higher is recommended")
Loading config from configs/projects/MoLo/ucf101/MoLo_UCF101_1shot_v1.yaml.
[06/30 15:32:31][INFO] train_net_few_shot: 473: Train with config:
[06/30 15:32:31][INFO] train_net_few_shot: 474: {
........
[06/30 15:32:52][INFO] utils.misc: 156: Params: 89,616,923
[06/30 15:32:52][INFO] utils.misc: 157: Mem: 0.33546018600463867 MB
[06/30 15:32:52][INFO] utils.misc: 164: nvidia-smi
Fri Jun 30 15:32:52 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 515.105.01 Driver Version: 515.105.01 CUDA Version: 11.7 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... Off | 00000000:01:00.0 On | N/A |
| 20% 42C P0 N/A / 75W | 856MiB / 4096MiB | 14% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 1081 G /usr/lib/xorg/Xorg 75MiB |
| 0 N/A N/A 1388 G /usr/bin/gnome-shell 55MiB |
| 0 N/A N/A 2795 G ...RendererForSitePerProcess 1MiB |
| 0 N/A N/A 96398 C python 719MiB |
+-----------------------------------------------------------------------------+
[06/30 15:32:52][INFO] models.utils.optimizer: 83: Optimized parameters constructed. Parameters without weight decay: []
[06/30 15:32:52][INFO] datasets.base.ssv2_few_shot: 110: Reading video list from file: train_few_shot.txt
[06/30 15:32:52][INFO] datasets.base.ssv2_few_shot: 145: Loading HMDB_few_shot dataset list for split 'train'...
[06/30 15:32:52][INFO] datasets.base.ssv2_few_shot: 57: loaded 9154 videos from train dataset: HMDB_few_shot !
[06/30 15:32:52][INFO] datasets.base.ssv2_few_shot: 171: Dataset HMDB_few_shot split train loaded. Length 9154.
[06/30 15:32:52][INFO] datasets.base.ssv2_few_shot: 110: Reading video list from file: test_few_shot.txt
[06/30 15:32:52][INFO] datasets.base.ssv2_few_shot: 145: Loading HMDB_few_shot dataset list for split 'test'...
[06/30 15:32:52][INFO] datasets.base.ssv2_few_shot: 57: loaded 2745 videos from test dataset: HMDB_few_shot !
[06/30 15:32:52][INFO] datasets.base.ssv2_few_shot: 171: Dataset HMDB_few_shot split test loaded. Length 2745.
[06/30 15:32:52][INFO] train_net_few_shot: 511: Mixup/cutmix disabled.
[06/30 15:32:52][INFO] train_net_few_shot: 523: Start epoch: 1
[06/30 15:32:52][INFO] train_net_few_shot: 55: Norm training: True
/home/andrew/anaconda3/envs/molo/lib/python3.6/site-packages/torch/nn/functional.py:2973: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
"See the documentation of nn.Upsample for details.".format(mode))
/home/andrew/anaconda3/envs/molo/lib/python3.6/site-packages/torch/nn/functional.py:2973: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
"See the documentation of nn.Upsample for details.".format(mode))
/home/andrew/anaconda3/envs/molo/lib/python3.6/site-packages/torch/nn/functional.py:2973: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
"See the documentation of nn.Upsample for details.".format(mode))
/home/andrew/anaconda3/envs/molo/lib/python3.6/site-packages/torch/nn/functional.py:2973: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
"See the documentation of nn.Upsample for details.".format(mode))
Traceback (most recent call last):
File "runs/run.py", line 103, in
main()
File "runs/run.py", line 97, in main
launch_task(cfg=run[0], init_method=run[0].get_args().init_method, func=run[1])
File "/home/andrew/MoLo-master/utils/launcher.py", line 36, in launch_task
func(cfg=cfg)
File "/home/andrew/MoLo-master/runs/train_net_few_shot.py", line 531, in train_few_shot
train_loader, model, model_ema, optimizer, train_meter, cur_epoch, mixup_fn, cfg, writer, val_meter, val_loader
File "/home/andrew/MoLo-master/runs/train_net_few_shot.py", line 104, in train_epoch
model_dict = model(task_dict)
File "/home/andrew/anaconda3/envs/molo/lib/python3.6/site-packages/torch/nn/modules/module.py", line 550, in call
result = self.forward(*input, **kwargs)
File "/home/andrew/MoLo-master/models/base/models.py", line 44, in forward
x = self.head(x)
File "/home/andrew/anaconda3/envs/molo/lib/python3.6/site-packages/torch/nn/modules/module.py", line 550, in call
result = self.forward(*input, **kwargs)
File "/home/andrew/MoLo-master/models/base/few_shot.py", line 2552, in forward
support_features, target_features, class_logits, support_features_motion, target_features_motion, feature_motion_recons = self.get_feats(support_images, target_images, support_labels)
File "/home/andrew/MoLo-master/models/base/few_shot.py", line 2464, in get_feats
support_features = self.pre_reduce(self.backbone(support_images)).squeeze() # [40, 2048, 7, 7] (5 way - 1 shot - 5 query)
File "/home/andrew/anaconda3/envs/molo/lib/python3.6/site-packages/torch/nn/modules/module.py", line 550, in call
result = self.forward(*input, **kwargs)
File "/home/andrew/anaconda3/envs/molo/lib/python3.6/site-packages/torch/nn/modules/container.py", line 100, in forward
input = module(input)
File "/home/andrew/anaconda3/envs/molo/lib/python3.6/site-packages/torch/nn/modules/module.py", line 550, in call
result = self.forward(*input, **kwargs)
File "/home/andrew/anaconda3/envs/molo/lib/python3.6/site-packages/torch/nn/modules/container.py", line 100, in forward
input = module(input)
File "/home/andrew/anaconda3/envs/molo/lib/python3.6/site-packages/torch/nn/modules/module.py", line 550, in call
result = self.forward(*input, **kwargs)
File "/home/andrew/anaconda3/envs/molo/lib/python3.6/site-packages/torchvision/models/resnet.py", line 109, in forward
out = self.bn2(out)
File "/home/andrew/anaconda3/envs/molo/lib/python3.6/site-packages/torch/nn/modules/module.py", line 550, in call
result = self.forward(*input, **kwargs)
File "/home/andrew/anaconda3/envs/molo/lib/python3.6/site-packages/torch/nn/modules/batchnorm.py", line 106, in forward
exponential_average_factor, self.eps)
File "/home/andrew/anaconda3/envs/molo/lib/python3.6/site-packages/torch/nn/functional.py", line 1923, in batch_norm
training, momentum, eps, torch.backends.cudnn.enabled
RuntimeError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 3.94 GiB total capacity; 3.31 GiB already allocated; 21.50 MiB free; 3.38 GiB reserved in total by PyTorch)