-
Notifications
You must be signed in to change notification settings - Fork 207
/
Copy pathfcos.py
51 lines (51 loc) · 1.47 KB
/
fcos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# model settings
num_classes = 80
model = dict(
type='Detection',
pretrained=True,
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(1, 2, 3, 4),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_output', # use P5
num_outs=5,
relu_before_extra_convs=True),
head=dict(
type='FCOSHead',
num_classes=num_classes,
in_channels=256,
stacked_convs=4,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
center_sampling=True,
center_sample_radius=1.5,
norm_on_bbox=True,
centerness_on_reg=True,
conv_cfg=None,
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=1.0),
loss_centerness=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True),
conv_bias=True,
test_cfg=dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.6),
max_per_img=100)))