-
Notifications
You must be signed in to change notification settings - Fork 22
Open
Description
I'm reproducing this paper and code and I have one question.
At model/resnet.py, I think that bn-relu are duplicated in PreAct ResNet18.
def CIFAR_ResNet18(pretrained=False, **kwargs):
return CIFAR_ResNet(PreActBlock, [2,2,2,2], **kwargs)and
class CIFAR_ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10, bias=True):
super(CIFAR_ResNet, self).__init__()
self.in_planes = 64
self.conv1 = conv3x3(3,64)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512*block.expansion, num_classes, bias=bias)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x, lin=0, lout=5):
out = x
out = self.conv1(out)
out = self.bn1(out) # <----------------------------------------
out = F.relu(out) # <----------------------------------------
out1 = self.layer1(out)
out2 = self.layer2(out1)
out3 = self.layer3(out2)
out = self.layer4(out3)
out = F.avg_pool2d(out, 4)
out4 = out.view(out.size(0), -1)
out = self.linear(out4)
return outself.layer1 in CIFAR_ResNet is PreActBlock shown below
class PreActBlock(nn.Module):
'''Pre-activation version of the BasicBlock.'''
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(PreActBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = conv3x3(in_planes, planes, stride)
self.bn2 = nn.BatchNorm2d(planes)
self.conv2 = conv3x3(planes, planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False)
)
def forward(self, x):
out = F.relu(self.bn1(x)) # <----------------------------------------
shortcut = self.shortcut(out)
out = self.conv1(out)
out = self.conv2(F.relu(self.bn2(out)))
out += shortcut
return outI think the input of PreActBlock has already passed through bn-relu.
When I printed this network,
==> Building model: CIFAR_ResNet18
CIFAR_ResNet(
(conv1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) # <----------------------------------------
(layer1): Sequential(
(0): PreActBlock(
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) # <----------------------------------------
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(shortcut): Sequential()
)
Metadata
Metadata
Assignees
Labels
No labels