Skip to content

Define Embedding logical type for vector data #1871

@Rhett-Ying

Description

@Rhett-Ying

Hi,

I am wondering if it's possible to add self-defined Embedding logical type into ww which represents vector data? I tried with below code but failed.

import pandas as pd
import numpy as np
import woodwork as ww
from woodwork.logical_types import LogicalType

class Embedding(LogicalType):
    primary_dtype = 'object'
    standard_tags = {'embedding', 'numeric'}

ww.type_system.add_type(Embedding)

df = pd.DataFrame(
    {
        "id": [0, 1, 2, 3],
        "code": ["012345412359", "122345712358", "012345412359", "012345412359"],
        'embedding_0': [np.array([1, 2, 3]), np.array([2, 3, 4]), np.array([3, 4, 5]), np.array([4, 5, 6])],
        'embedding_1': [[1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 6]],
    }
)

with ww.config.with_options():
    df.ww.init()
df.ww

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions