-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCountSemiprimes.py
96 lines (57 loc) · 2.22 KB
/
CountSemiprimes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# you can write to stdout for debugging purposes, e.g.
# print "this is a debug message"
import math
# this solution still needs a lot of fixing
# it only gets a 55% on codility since the performance
# is really bad (runs in O(N*log(log(N)) + M*N when
# it is supposed to run in O(N*log(log(N)) + M)
# returns a list of primes under a given limit
# using the Sieve of Eratosthenes algorithm
def generatePrimes(n):
primes = []
# initialize list of boolean values initially set all to True
a = [True for i in range(n)]
sqrtN = int(math.sqrt(n))
for i in range(2, sqrtN):
if a[i]:
k = 0
j = i**2 + i*k
while j < n:
a[j] = False
k += 1
j = i**2 + i*k
for i in range(2, len(a)):
# if a[i] is prime we add it to our list of primes
if a[i]:
primes.append(i)
return primes
# returns a list of semiprimes under a given value
def generateSemiprimes(n):
semiprimes = []
# list of boolean values where indices represent semiprime numbers
# (i.e. True if index i is semiprimes and false otherwise)
a = [False for i in range(n)]
primes = generatePrimes(n)
for i in range(len(primes)):
for j in range(len(primes)):
if primes[i]*primes[j] <= n:
semiprime = primes[i]*primes[j]
a[semiprime-1] = True
else:
break
for i in range(len(a)):
# if a[i] is semiprime then we add it to our list of semiprimes
if a[i]:
semiprimes.append(i+1)
return semiprimes
def solution(N, P, Q):
# write your code in Python 2.7
semiprimes = generateSemiprimes(N)
answer = []
for i in range(len(P)):
total = 0
for j in range(P[i], Q[i]+1): # inclusive range
if j in semiprimes:
total += 1
answer.append(total)
return answer