-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathhough_transform.py
115 lines (95 loc) · 4.18 KB
/
hough_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
import imageio
import math
def rgb2gray(rgb):
return np.dot(rgb[..., :3], [0.299, 0.587, 0.114]).astype(np.uint8)
def hough_line(img, angle_step=1, lines_are_white=True, value_threshold=5):
"""
Hough transform for lines
Input:
img - 2D binary image with nonzeros representing edges
angle_step - Spacing between angles to use every n-th angle
between -90 and 90 degrees. Default step is 1.
lines_are_white - boolean indicating whether lines to be detected are white
value_threshold - Pixel values above or below the value_threshold are edges
Returns:
accumulator - 2D array of the hough transform accumulator
theta - array of angles used in computation, in radians.
rhos - array of rho values. Max size is 2 times the diagonal
distance of the input image.
"""
# Rho and Theta ranges
thetas = np.deg2rad(np.arange(-90.0, 90.0, angle_step))
width, height = img.shape
diag_len = int(round(math.sqrt(width * width + height * height)))
rhos = np.linspace(-diag_len, diag_len, diag_len * 2)
# Cache some resuable values
cos_t = np.cos(thetas)
sin_t = np.sin(thetas)
num_thetas = len(thetas)
# Hough accumulator array of theta vs rho
accumulator = np.zeros((2 * diag_len, num_thetas), dtype=np.uint8)
# (row, col) indexes to edges
are_edges = img > value_threshold if lines_are_white else img < value_threshold
y_idxs, x_idxs = np.nonzero(are_edges)
# Vote in the hough accumulator
for i in range(len(x_idxs)):
x = x_idxs[i]
y = y_idxs[i]
for t_idx in range(num_thetas):
# Calculate rho. diag_len is added for a positive index
rho = diag_len + int(round(x * cos_t[t_idx] + y * sin_t[t_idx]))
accumulator[rho, t_idx] += 1
return accumulator, thetas, rhos
def fast_hough_line(img, angle_step=1, lines_are_white=True, value_threshold=5):
"""hough line using vectorized numpy operations,
may take more memory, but takes much less time"""
# Rho and Theta ranges
thetas = np.deg2rad(np.arange(-90.0, 90.0, angle_step)) #can be changed
#width, height = col.size #if we use pillow
width, height = img.shape
diag_len = int(np.ceil(np.sqrt(width * width + height * height))) # max_dist
rhos = np.linspace(-diag_len, diag_len, diag_len * 2)
# Cache some resuable values
cos_theta = np.cos(thetas)
sin_theta = np.sin(thetas)
num_thetas = len(thetas)
# Hough accumulator array of theta vs rho
accumulator = np.zeros((2 * diag_len, num_thetas))
are_edges = img > value_threshold if lines_are_white else img < value_threshold
#are_edges = cv2.Canny(img,50,150,apertureSize = 3)
y_idxs, x_idxs = np.nonzero(are_edges) # (row, col) indexes to edges
# Vote in the hough accumulator
xcosthetas = np.dot(x_idxs.reshape((-1,1)), cos_theta.reshape((1,-1)))
ysinthetas = np.dot(y_idxs.reshape((-1,1)), sin_theta.reshape((1,-1)))
rhosmat = np.round(xcosthetas + ysinthetas) + diag_len
rhosmat = rhosmat.astype(np.int16)
for i in range(num_thetas):
rhos,counts = np.unique(rhosmat[:,i], return_counts=True)
accumulator[rhos,i] = counts
return accumulator, thetas, rhos
def show_hough_line(img, accumulator, thetas, rhos, save_path=None):
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 2, figsize=(10, 10))
ax[0].imshow(img, cmap=plt.cm.gray)
ax[0].set_title('Input image')
ax[0].axis('image')
ax[1].imshow(
accumulator, cmap='jet',
extent=[np.rad2deg(thetas[-1]), np.rad2deg(thetas[0]), rhos[-1], rhos[0]])
ax[1].set_aspect('equal', adjustable='box')
ax[1].set_title('Hough transform')
ax[1].set_xlabel('Angles (degrees)')
ax[1].set_ylabel('Distance (pixels)')
ax[1].axis('image')
# plt.axis('off')
if save_path is not None:
plt.savefig(save_path, bbox_inches='tight')
plt.show()
if __name__ == '__main__':
imgpath = 'imgs/binary_crosses.png'
img = imageio.imread(imgpath)
if img.ndim == 3:
img = rgb2gray(img)
accumulator, thetas, rhos = hough_line(img)
show_hough_line(img, accumulator, thetas, rhos, save_path='imgs/output.png')