@@ -33,8 +33,8 @@ def setUp(self):
33
33
34
34
# Wrangling data into a dataframe and selecting training examples
35
35
data = pd .DataFrame ({"text" : corpus , "label" : group_labels })
36
- train_df = data .groupby ("label" ).sample (500 )
37
- test_df = data .drop (index = train_df .index )
36
+ train_df = data .groupby ("label" ).sample (50 )
37
+ test_df = data .drop (index = train_df .index ). groupby ( "label" ). sample ( 100 )
38
38
39
39
x_train = train_df ["text" ].values
40
40
y_train = train_df ["label" ].values
@@ -132,7 +132,7 @@ def test_textregression(self):
132
132
133
133
# test training results
134
134
self .assertAlmostEqual (max (hist .history ["lr" ]), lr )
135
- self .assertLess (min (hist .history ["val_mae" ]), 0.1 )
135
+ self .assertLess (min (hist .history ["val_mae" ]), 0.5 )
136
136
137
137
# test top losses
138
138
obs = learner .top_losses (n = 1 , val_data = None )
@@ -150,10 +150,10 @@ def test_textregression(self):
150
150
151
151
# test predictor
152
152
p = ktrain .get_predictor (learner .model , preproc )
153
- self .assertGreater (p .predict ([TEST_DOC ])[0 ], 0.9 )
153
+ self .assertGreater (p .predict ([TEST_DOC ])[0 ], 0.5 )
154
154
p .save ("/tmp/test_predictor" )
155
155
p = ktrain .load_predictor ("/tmp/test_predictor" )
156
- self .assertGreater (p .predict ([TEST_DOC ])[0 ], 0.9 )
156
+ self .assertGreater (p .predict ([TEST_DOC ])[0 ], 0.5 )
157
157
self .assertIsNone (p .explain (TEST_DOC ))
158
158
159
159
0 commit comments